論文の概要: DisCo-DSO: Coupling Discrete and Continuous Optimization for Efficient Generative Design in Hybrid Spaces
- arxiv url: http://arxiv.org/abs/2412.11051v1
- Date: Sun, 15 Dec 2024 04:51:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 15:49:59.973342
- Title: DisCo-DSO: Coupling Discrete and Continuous Optimization for Efficient Generative Design in Hybrid Spaces
- Title(参考訳): DisCo-DSO:ハイブリッド空間における効率的な生成設計のための離散と連続最適化の結合
- Authors: Jacob F. Pettit, Chak Shing Lee, Jiachen Yang, Alex Ho, Daniel Faissol, Brenden Petersen, Mikel Landajuela,
- Abstract要約: DisCo-DSOは、生成モデルを用いて離散的かつ連続的な設計変数に関する共同分布を学習する新しいアプローチである。
特に,決定木を用いた強化学習の最先端手法に対するDisCo-DSOの優位性について述べる。
- 参考スコア(独自算出の注目度): 12.729697787995892
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider the challenge of black-box optimization within hybrid discrete-continuous and variable-length spaces, a problem that arises in various applications, such as decision tree learning and symbolic regression. We propose DisCo-DSO (Discrete-Continuous Deep Symbolic Optimization), a novel approach that uses a generative model to learn a joint distribution over discrete and continuous design variables to sample new hybrid designs. In contrast to standard decoupled approaches, in which the discrete and continuous variables are optimized separately, our joint optimization approach uses fewer objective function evaluations, is robust against non-differentiable objectives, and learns from prior samples to guide the search, leading to significant improvement in performance and sample efficiency. Our experiments on a diverse set of optimization tasks demonstrate that the advantages of DisCo-DSO become increasingly evident as the complexity of the problem increases. In particular, we illustrate DisCo-DSO's superiority over the state-of-the-art methods for interpretable reinforcement learning with decision trees.
- Abstract(参考訳): 決定木学習や記号回帰といった様々な応用で発生する問題として,ハイブリッド離散連続空間と可変長空間におけるブラックボックス最適化の課題を考察する。
本研究では,離散的かつ連続的な設計変数の結合分布を学習し,新しいハイブリッド設計をサンプリングする手法であるDisCo-DSO(Discrete-Continuous Deep Symbolic Optimization)を提案する。
離散変数と連続変数を別々に最適化する標準的な分離手法とは対照的に、我々の共同最適化手法は目的関数の評価を少なくし、非微分対象に対して堅牢であり、事前サンプルから学習して探索をガイドし、性能とサンプル効率を大幅に向上させる。
最適化タスクの多種多様な集合に関する実験により,問題の複雑さが増大するにつれて,DisCo-DSOの利点がますます明らかになることを示した。
特に,決定木を用いた強化学習の最先端手法に対するDisCo-DSOの優位性について述べる。
関連論文リスト
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
本稿では,両者の時間的分離を必要とせずに,意思決定とIS分布を共同で更新する反復型アルゴリズムを提案する。
本手法は,IS分布系に対する目的的,軽度な仮定の凸性の下で,最小の変数分散を達成し,大域収束を保証する。
論文 参考訳(メタデータ) (2025-04-04T16:10:18Z) - Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
オフライン多目的最適化のための優先誘導拡散モデルを提案する。
我々の指導は、ある設計が他の設計を支配する確率を予測するために訓練された選好モデルである。
本結果は,多種多様な高品質な解を生成する上での分類器誘導拡散モデルの有効性を浮き彫りにした。
論文 参考訳(メタデータ) (2025-03-21T16:49:38Z) - Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
フェデレートラーニング(FL)は、プライバシ保護機械学習のトレーニングパラダイムとして広く採用されている。
本稿では、非同期更新を適応的フェデレーション最適化と証明可能な保証に組み込む新しい手法であるFADASについて紹介する。
提案アルゴリズムの収束率を厳格に確立し,FADASが他の非同期FLベースラインよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-07-25T20:02:57Z) - Hybrid Reinforcement Learning Framework for Mixed-Variable Problems [0.7146036252503987]
離散変数選択のためのRLと連続変数調整のためのベイズ最適化を組み合わせたハイブリッド強化学習(RL)フレームワークを提案する。
提案手法は,従来のRL,ランダム探索,スタンドアローンベイズ最適化を有効性と効率で常に上回っている。
論文 参考訳(メタデータ) (2024-05-30T21:42:33Z) - Context-aware Diversity Enhancement for Neural Multi-Objective Combinatorial Optimization [19.631213689157995]
マルチオブジェクト最適化(MOCO)問題は、様々な現実世界のアプリケーションで広く用いられている。
我々はCDEというコンテキスト対応の多様性向上アルゴリズムを提案する。
提案したCDEは,文脈情報を効果的かつ効率的に把握し,多様性の向上をもたらす。
論文 参考訳(メタデータ) (2024-05-14T13:42:19Z) - Gradient Based Hybridization of PSO [1.1059341532498634]
Particle Swarm Optimization (PSO) は、過去30年間にわたって、強力なメタヒューリスティックなグローバル最適化アプローチとして現れてきた。
PSOは、単一目的シナリオにおける早期の停滞や、探索と搾取のバランスを取る必要性といった課題に直面している。
多様なパラダイムから確立された最適化手法と協調的な性質を統合することでPSOをハイブリダイズすることは、有望な解決策となる。
論文 参考訳(メタデータ) (2023-12-15T11:26:36Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Debiasing Conditional Stochastic Optimization [15.901623717313493]
本稿では,ポートフォリオ選択や強化学習,堅牢な学習など,さまざまな応用をカバーする条件因果最適化(CSO)問題について検討する。
有限変量変量CSO問題に対する新しいアルゴリズムを開発し、既存の結果を大幅に改善する。
我々は,本手法が他の最適化問題と同様の課題に対処するための有用なツールとなる可能性があると考えている。
論文 参考訳(メタデータ) (2023-04-20T19:19:55Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。