論文の概要: Edge Contrastive Learning: An Augmentation-Free Graph Contrastive Learning Model
- arxiv url: http://arxiv.org/abs/2412.11075v1
- Date: Sun, 15 Dec 2024 06:16:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:56:03.147645
- Title: Edge Contrastive Learning: An Augmentation-Free Graph Contrastive Learning Model
- Title(参考訳): エッジコントラスト学習:拡張自由グラフコントラスト学習モデル
- Authors: Yujun Li, Hongyuan Zhang, Yuan Yuan,
- Abstract要約: グラフコントラスト学習(GCL)は、ラベルのないグラフデータから表現を自己管理的に学習することを目的としている。
エッジベースGCLの主な障害の1つは、重い負担である。
エッジコントラストを実現するために,Augmentation Free Edge Contrastive Learning (AFECL)を提案する。
- 参考スコア(独自算出の注目度): 18.02317423788033
- License:
- Abstract: Graph contrastive learning (GCL) aims to learn representations from unlabeled graph data in a self-supervised manner and has developed rapidly in recent years. However, edgelevel contrasts are not well explored by most existing GCL methods. Most studies in GCL only regard edges as auxiliary information while updating node features. One of the primary obstacles of edge-based GCL is the heavy computation burden. To tackle this issue, we propose a model that can efficiently learn edge features for GCL, namely AugmentationFree Edge Contrastive Learning (AFECL) to achieve edgeedge contrast. AFECL depends on no augmentation consisting of two parts. Firstly, we design a novel edge feature generation method, where edge features are computed by embedding concatenation of their connected nodes. Secondly, an edge contrastive learning scheme is developed, where edges connecting the same nodes are defined as positive pairs, and other edges are defined as negative pairs. Experimental results show that compared with recent state-of-the-art GCL methods or even some supervised GNNs, AFECL achieves SOTA performance on link prediction and semi-supervised node classification of extremely scarce labels. The source code is available at https://github.com/YujunLi361/AFECL.
- Abstract(参考訳): グラフコントラスト学習(GCL)は、ラベルのないグラフデータから自己教師付きで表現を学習することを目的としており、近年急速に発展している。
しかし、エッジレベルのコントラストは既存のほとんどのGCL法ではよく調べられていない。
GCLのほとんどの研究は、エッジをノードの機能を更新しながら補助情報とみなしている。
エッジベースGCLの主な障害の1つは、計算負荷が大きいことである。
本稿では,GCLのエッジ特徴,すなわちAugmentation Free Edge Contrastive Learning(AFECL)を効率的に学習し,エッジコントラストを実現するモデルを提案する。
AFECLは2つの部分からなる拡張に依存しない。
まず,接続ノードの連結を埋め込むことでエッジ特徴を計算できる新しいエッジ特徴生成法を設計する。
第二に、同じノードを接続するエッジを正のペアとして定義し、他のエッジを負のペアとして定義する、エッジコントラスト学習方式が開発されている。
実験結果から,最近の最先端GCL法や一部の教師付きGNNと比較して,AFECLはリンク予測と半教師付きノード分類においてSOTA性能を達成していることがわかった。
ソースコードはhttps://github.com/YujunLi361/AFECLで入手できる。
関連論文リスト
- Why Does Dropping Edges Usually Outperform Adding Edges in Graph Contrastive Learning? [54.44813218411879]
グラフがネットワークにどのように適合するかを定量化するために、新しいメトリック、すなわちエラー通過率(EPR)を導入する。
理論的な結論とポジティブ・インセンティブ雑音のアイデアに触発されて、我々は新しいGCLアルゴリズム、エラー・パッシングに基づくグラフコントラスト学習(EPAGCL)を提案する。
EPRから得られる重みに基づいてエッジの追加とドロップによりビューを生成する。
論文 参考訳(メタデータ) (2024-12-11T06:31:06Z) - GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning [0.0]
グラフ表現学習は、ノードをベクトル表現にマッピングする際にグラフトポロジを保存する強力なツールとして登場した。
現在のグラフニューラルネットワークモデルは、広範なラベル付きデータを必要とするという課題に直面している。
多次元コントラスト学習によるグラフ表現埋め込みを提案する。
論文 参考訳(メタデータ) (2024-09-12T03:09:05Z) - ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks [53.41164429486268]
グラフニューラルネットワーク(GNN)は、近隣ノードからグラフ構造化情報を収集する強力な能力を示した。
GNNの性能は、ノイズや冗長なグラフデータによって引き起こされる一般化の貧弱さと脆弱な堅牢性によって制限される。
本稿では,エッジの除去を誘導する対向エッジ予測器を利用する新しい対向エッジドロップ法 (ADEdgeDrop) を提案する。
論文 参考訳(メタデータ) (2024-03-14T08:31:39Z) - Smoothed Graph Contrastive Learning via Seamless Proximity Integration [30.247207861739245]
グラフコントラスト学習(GCL)はノードペアを正と負に分類することでノード表現を整列させる。
SGCL(Smoothed Graph Contrastive Learning Model)を提案する。
提案したSGCLは,3つの異なる平滑化手法を取り入れることで,ノード対に付随するペナルティを対照的な損失で調整する。
論文 参考訳(メタデータ) (2024-02-23T11:32:46Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [86.87385758192566]
リンク予測のためのグラフニューラルネットワーク(GNN)は、緩やかに2つの広いカテゴリに分けられる。
本稿では,新しいGNNアーキテクチャを提案する。このアーキテクチャでは,Emphforwardパスは,Emphboth陽性(典型的)と負陰性(アプローチに共通)のエッジに明示的に依存する。
これは、埋め込み自体を、正と負のサンプルの分離を好むフォワードパス特異的エネルギー関数の最小化子として再キャストすることで達成される。
論文 参考訳(メタデータ) (2023-10-14T07:02:54Z) - Adversarial Learning Data Augmentation for Graph Contrastive Learning in
Recommendation [56.10351068286499]
グラフコントラスト学習のための学習可能なデータ拡張法(LDA-GCL)を提案する。
提案手法は,InfoMin と InfoMax の原則に従うデータ強化学習とグラフコントラスト学習を含む。
本手法は,データ拡張とユーザやアイテムの効果的な表現を学習するために,対向損失関数を最適化する。
論文 参考訳(メタデータ) (2023-02-05T06:55:51Z) - Graph Soft-Contrastive Learning via Neighborhood Ranking [19.241089079154044]
グラフコントラスト学習(GCL)は,グラフ自己教師型学習の領域において,有望なアプローチとして登場した。
グラフソフトコントラスト学習(GSCL)という新しいパラダイムを提案する。
GSCLは地域ランキングを通じてGCLを促進するため、全く同様のペアを特定する必要がなくなる。
論文 参考訳(メタデータ) (2022-09-28T09:52:15Z) - Learning heterophilious edge to drop: A general framework for boosting
graph neural networks [19.004710957882402]
本研究は, グラフ構造を最適化することにより, ヘテロフィリの負の影響を緩和することを目的とする。
LHEと呼ばれる構造学習手法を提案する。
emphLHEによるGNNの性能改善は, ホモフィリレベルの全スペクトルにわたる複数のデータセットで実証された。
論文 参考訳(メタデータ) (2022-05-23T14:07:29Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
グラフニューラルネットワーク(GNN)は、グラフ構造情報を利用してネットワークデータから表現をモデル化する処理アーキテクチャである。
彼らの成功にもかかわらず、GNNは限られた訓練データから得られる準最適一般化性能に悩まされている。
本稿では、一般化性能を改善し、堅牢なGNNモデルを学習するためのトポロジ適応エッジドロップ法を提案する。
論文 参考訳(メタデータ) (2021-06-05T13:20:36Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
逐次グラフ畳み込みネットワーク(GCN)を用いた新しいプールベースアクティブラーニングフレームワークを提案する。
少数のランダムなサンプル画像がシードラベル付き例であるので、グラフのパラメータを学習してラベル付きノードと非ラベル付きノードを区別する。
我々はGCNの特性を利用してラベル付けされたものと十分に異なる未ラベルの例を選択する。
論文 参考訳(メタデータ) (2020-06-18T00:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。