論文の概要: Learning heterophilious edge to drop: A general framework for boosting
graph neural networks
- arxiv url: http://arxiv.org/abs/2205.11322v1
- Date: Mon, 23 May 2022 14:07:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 19:23:42.045089
- Title: Learning heterophilious edge to drop: A general framework for boosting
graph neural networks
- Title(参考訳): ヘテロフィリアスなエッジからドロップへの学習 - グラフニューラルネットワークの強化のための汎用フレームワーク
- Authors: Jincheng Huang, Ping Li, Rui Huang, Chen Na
- Abstract要約: 本研究は, グラフ構造を最適化することにより, ヘテロフィリの負の影響を緩和することを目的とする。
LHEと呼ばれる構造学習手法を提案する。
emphLHEによるGNNの性能改善は, ホモフィリレベルの全スペクトルにわたる複数のデータセットで実証された。
- 参考スコア(独自算出の注目度): 19.004710957882402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) aim at integrating node contents with graph
structure to learn nodes/graph representations. Nevertheless, it is found that
most of existing GNNs do not work well on data with high heterophily level that
accounts for a large proportion of edges between different class labels.
Recently, many efforts to tackle this problem focus on optimizing the way of
feature learning. From another angle, this work aims at mitigating the negative
impacts of heterophily by optimizing graph structure for the first time.
Specifically, on assumption that graph smoothing along heterophilious edges can
hurt prediction performance, we propose a structure learning method called LHE
to identify heterophilious edges to drop. A big advantage of this solution is
that it can boost GNNs without careful modification of feature learning
strategy. Extensive experiments demonstrate the remarkable performance
improvement of GNNs with \emph{LHE} on multiple datasets across full spectrum
of homophily level.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は、ノードの内容をグラフ構造に統合し、ノード/グラフ表現を学習することを目的としている。
それにもかかわらず、既存のGNNのほとんどは、異なるクラスラベル間の大きなエッジを占める高いヘテロフィリーレベルのデータではうまく機能しない。
近年,この問題に取り組む多くの取り組みが,機能学習の最適化に重点を置いている。
別の角度から、この研究は、初めてグラフ構造を最適化することで、ヘテロフィリの負の影響を緩和することを目的としている。
具体的には,不均一エッジに沿ったグラフ平滑化が予測性能を損なうと仮定したlheと呼ばれる構造学習手法を提案する。
このソリューションの大きな利点は、機能学習戦略を慎重に修正することなく、GNNを強化できることです。
大規模な実験は、ホモフィリーレベルの全スペクトルにわたる複数のデータセット上で \emph{LHE} を用いた GNN の顕著な性能向上を示す。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Efficient Heterogeneous Graph Learning via Random Projection [65.65132884606072]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - Reducing Over-smoothing in Graph Neural Networks Using Relational
Embeddings [0.15619750966454563]
本稿では,GNNにおけるオーバー・スムーシング問題の影響を緩和する,シンプルで効率的な手法を提案する。
我々の手法は他の手法と組み合わせて最高の性能を与えることができる。
論文 参考訳(メタデータ) (2023-01-07T19:26:04Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
本稿では,学習タスクに関係のないグラフエッジを適応的に識別する新しいエッジ分割GNN(ES-GNN)フレームワークを提案する。
本稿では,ES-GNNを非交叉グラフ記述問題の解とみなすことができることを示す。
論文 参考訳(メタデータ) (2022-05-27T01:29:03Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Boost then Convolve: Gradient Boosting Meets Graph Neural Networks [6.888700669980625]
グラデーションブースト決定木(gbdt)は,異種データに対して他の機械学習手法よりも優れていることが示されている。
我々は,gbdt と gnn を共同で訓練し,両世界のベストを勝ち取る新しいアーキテクチャを提案する。
我々のモデルは、GNNの勾配更新に新しい木を適合させることにより、エンドツーエンドの最適化の恩恵を受ける。
論文 参考訳(メタデータ) (2021-01-21T10:46:41Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。