GraphMoRE: Mitigating Topological Heterogeneity via Mixture of Riemannian Experts
- URL: http://arxiv.org/abs/2412.11085v1
- Date: Sun, 15 Dec 2024 06:52:40 GMT
- Title: GraphMoRE: Mitigating Topological Heterogeneity via Mixture of Riemannian Experts
- Authors: Zihao Guo, Qingyun Sun, Haonan Yuan, Xingcheng Fu, Min Zhou, Yisen Gao, Jianxin Li,
- Abstract summary: Real-world graphs have inherently complex and diverse topological patterns, known as topological heterogeneity.
Most existing works learn graph representation in a single constant curvature space that is insufficient to match the complex geometric shapes, resulting in low-quality embeddings with high distortion.
- Score: 13.701637246257707
- License:
- Abstract: Real-world graphs have inherently complex and diverse topological patterns, known as topological heterogeneity. Most existing works learn graph representation in a single constant curvature space that is insufficient to match the complex geometric shapes, resulting in low-quality embeddings with high distortion. This also constitutes a critical challenge for graph foundation models, which are expected to uniformly handle a wide variety of diverse graph data. Recent studies have indicated that product manifold gains the possibility to address topological heterogeneity. However, the product manifold is still homogeneous, which is inadequate and inflexible for representing the mixed heterogeneous topology. In this paper, we propose a novel Graph Mixture of Riemannian Experts (GraphMoRE) framework to effectively tackle topological heterogeneity by personalized fine-grained topology geometry pattern preservation. Specifically, to minimize the embedding distortion, we propose a topology-aware gating mechanism to select the optimal embedding space for each node. By fusing the outputs of diverse Riemannian experts with learned gating weights, we construct personalized mixed curvature spaces for nodes, effectively embedding the graph into a heterogeneous manifold with varying curvatures at different points. Furthermore, to fairly measure pairwise distances between different embedding spaces, we present a concise and effective alignment strategy. Extensive experiments on real-world and synthetic datasets demonstrate that our method achieves superior performance with lower distortion, highlighting its potential for modeling complex graphs with topological heterogeneity, and providing a novel architectural perspective for graph foundation models.
Related papers
- Multi-Hyperbolic Space-based Heterogeneous Graph Attention Network [5.816451272912859]
We propose Multi-hyperbolic Space-based heterogeneous Graph Attention Network (MSGAT) to capture diverse power-law structures within heterogeneous graphs.
MSGAT outperforms state-of-the-art baselines in various graph machine learning tasks.
arXiv Detail & Related papers (2024-11-18T04:55:26Z) - Hyperbolic Heterogeneous Graph Attention Networks [3.0165549581582454]
Most previous heterogeneous graph embedding models represent elements in a heterogeneous graph as vector representations in a low-dimensional Euclidean space.
We propose Hyperbolic Heterogeneous Graph Attention Networks (HHGAT) that learn vector representations in hyperbolic spaces with meta-path instances.
We conducted experiments on three real-world heterogeneous graph datasets, demonstrating that HHGAT outperforms state-of-the-art heterogeneous graph embedding models in node classification and clustering tasks.
arXiv Detail & Related papers (2024-04-15T04:45:49Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Contrastive Graph Clustering in Curvature Spaces [74.03252813800334]
We present a novel end-to-end contrastive graph clustering model named CONGREGATE.
To support geometric clustering, we construct a theoretically grounded Heterogeneous Curvature Space.
We then train the graph clusters by an augmentation-free reweighted contrastive approach.
arXiv Detail & Related papers (2023-05-05T14:04:52Z) - FMGNN: Fused Manifold Graph Neural Network [102.61136611255593]
Graph representation learning has been widely studied and demonstrated effectiveness in various graph tasks.
We propose the Fused Manifold Graph Neural Network (NN), a novel GNN architecture that embeds graphs into different Manifolds during training.
Our experiments demonstrate that NN yields superior performance over strong baselines on the benchmarks of node classification and link prediction tasks.
arXiv Detail & Related papers (2023-04-03T15:38:53Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Curvature Graph Generative Adversarial Networks [31.763904668737304]
Generative adversarial network (GAN) is widely used for generalized and robust learning on graph data.
Existing GAN-based graph representation methods generate negative samples by random walk or traverse in discrete space.
CurvGAN consistently and significantly outperforms the state-of-the-art methods across multiple tasks.
arXiv Detail & Related papers (2022-03-03T10:00:32Z) - Heterogeneous manifolds for curvature-aware graph embedding [6.3351090376024155]
Graph embeddings are used in a broad range of Graph ML applications.
The quality of such embeddings crucially depends on whether the geometry of the space matches that of the graph.
arXiv Detail & Related papers (2022-02-02T18:18:35Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Hybrid Micro/Macro Level Convolution for Heterogeneous Graph Learning [45.14314180743549]
Heterogeneous graphs are pervasive in practical scenarios, where each graph consists of multiple types of nodes and edges.
Most of the existing graph convolution approaches were designed for homogeneous graphs, and therefore cannot handle heterogeneous graphs.
We propose HGConv, a novel Heterogeneous Graph Convolution approach, to learn comprehensive node representations on heterogeneous graphs.
arXiv Detail & Related papers (2020-12-29T12:12:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.