Seeing the Forest and the Trees: Solving Visual Graph and Tree Based Data Structure Problems using Large Multimodal Models
- URL: http://arxiv.org/abs/2412.11088v1
- Date: Sun, 15 Dec 2024 07:15:19 GMT
- Title: Seeing the Forest and the Trees: Solving Visual Graph and Tree Based Data Structure Problems using Large Multimodal Models
- Authors: Sebastian Gutierrez, Irene Hou, Jihye Lee, Kenneth Angelikas, Owen Man, Sophia Mettille, James Prather, Paul Denny, Stephen MacNeil,
- Abstract summary: We investigate the capabilities of large multimodal models (LMMs) to solve graph and tree data structure problems based only on images.
GPT-4o and Gemini 1.5 Flash performed best on trees and graphs respectively.
Our findings highlight the influence of structural and visual variations on model performance.
- Score: 2.1894663332872932
- License:
- Abstract: Recent advancements in generative AI systems have raised concerns about academic integrity among educators. Beyond excelling at solving programming problems and text-based multiple-choice questions, recent research has also found that large multimodal models (LMMs) can solve Parsons problems based only on an image. However, such problems are still inherently text-based and rely on the capabilities of the models to convert the images of code blocks to their corresponding text. In this paper, we further investigate the capabilities of LMMs to solve graph and tree data structure problems based only on images. To achieve this, we computationally construct and evaluate a novel benchmark dataset comprising 9,072 samples of diverse graph and tree data structure tasks to assess the performance of the GPT-4o, GPT-4v, Gemini 1.5 Pro, Gemini 1.5 Flash, Gemini 1.0 Pro Vision, and Claude 3 model families. GPT-4o and Gemini 1.5 Flash performed best on trees and graphs respectively. GPT-4o achieved 87.6% accuracy on tree samples, while Gemini 1.5 Flash, achieved 56.2% accuracy on graph samples. Our findings highlight the influence of structural and visual variations on model performance. This research not only introduces an LMM benchmark to facilitate replication and further exploration but also underscores the potential of LMMs in solving complex computing problems, with important implications for pedagogy and assessment practices.
Related papers
- Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs [62.875934732547435]
Current large language models (MLLMs) often underperform on mathematical problem-solving tasks that require fine-grained visual understanding.
In this paper, we evaluate the visual grounding capabilities of state-of-the-art MLLMs and reveal a significant negative correlation between visual grounding accuracy and problem-solving performance.
We propose a novel approach, SVE-Math, featuring a geometric-grounded vision encoder and a feature router that dynamically adjusts the contribution of hierarchical visual feature maps.
arXiv Detail & Related papers (2025-01-11T04:08:44Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - VisionGraph: Leveraging Large Multimodal Models for Graph Theory Problems in Visual Context [41.11701706312843]
We design a benchmark named VisionGraph, used to explore the capabilities of advanced LMMs in solving multimodal graph theory problems.
We present a Description-Program-Reasoning (DPR) chain to enhance the logical accuracy of reasoning processes.
Our study shows that GPT-4V outperforms Gemini Pro in multi-step graph reasoning.
arXiv Detail & Related papers (2024-05-08T10:42:48Z) - GraphWiz: An Instruction-Following Language Model for Graph Problems [39.656196336071275]
We introduce GraphInstruct, a dataset designed to equip language models with the ability to tackle a broad spectrum of graph problems using explicit reasoning paths.
We build GraphWiz, an open-source language model capable of resolving various graph problem types while generating clear reasoning processes.
The enhanced model, GraphWiz-DPO, achieves an average accuracy of 65% across nine tasks with different complexity levels, surpassing GPT-4 which has an average accuracy of 43.8%.
arXiv Detail & Related papers (2024-02-25T08:41:32Z) - CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations [61.21923643289266]
Chain of Manipulations is a mechanism that enables Vision-Language Models to solve problems step-by-step with evidence.
After training, models can solve various visual problems by eliciting intrinsic manipulations (e.g., grounding, zoom in) actively without involving external tools.
Our trained model, textbfCogCoM, achieves state-of-the-art performance across 9 benchmarks from 4 categories.
arXiv Detail & Related papers (2024-02-06T18:43:48Z) - MathVista: Evaluating Mathematical Reasoning of Foundation Models in
Visual Contexts [170.01089233942594]
MathVista is a benchmark designed to combine challenges from diverse mathematical and visual tasks.
The best-performing GPT-4V model achieves an overall accuracy of 49.9%, substantially outperforming Bard, the second-best performer, by 15.1%.
GPT-4V still falls short of human performance by 10.4%, as it often struggles to understand complex figures and perform rigorous reasoning.
arXiv Detail & Related papers (2023-10-03T17:57:24Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.