Paid with Models: Optimal Contract Design for Collaborative Machine Learning
- URL: http://arxiv.org/abs/2412.11122v2
- Date: Tue, 31 Dec 2024 10:00:09 GMT
- Title: Paid with Models: Optimal Contract Design for Collaborative Machine Learning
- Authors: Bingchen Wang, Zhaoxuan Wu, Fusheng Liu, Bryan Kian Hsiang Low,
- Abstract summary: Collaborative machine learning (CML) provides a promising paradigm for democratizing advanced technologies by enabling cost-sharing among participants.
Contract theory presents a viable solution by rewarding participants with models of varying accuracy based on their contributions.
Unlike compensation, using models as rewards introduces unique challenges, particularly due to the nature of these rewards.
- Score: 33.08216776439051
- License:
- Abstract: Collaborative machine learning (CML) provides a promising paradigm for democratizing advanced technologies by enabling cost-sharing among participants. However, the potential for rent-seeking behaviors among parties can undermine such collaborations. Contract theory presents a viable solution by rewarding participants with models of varying accuracy based on their contributions. However, unlike monetary compensation, using models as rewards introduces unique challenges, particularly due to the stochastic nature of these rewards when contribution costs are privately held information. This paper formalizes the optimal contracting problem within CML and proposes a transformation that simplifies the non-convex optimization problem into one that can be solved through convex optimization algorithms. We conduct a detailed analysis of the properties that an optimal contract must satisfy when models serve as the rewards, and we explore the potential benefits and welfare implications of these contract-driven CML schemes through numerical experiments.
Related papers
- MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Delegating Data Collection in Decentralized Machine Learning [67.0537668772372]
Motivated by the emergence of decentralized machine learning (ML) ecosystems, we study the delegation of data collection.
We design optimal and near-optimal contracts that deal with two fundamental information asymmetries.
We show that a principal can cope with such asymmetry via simple linear contracts that achieve 1-1/e fraction of the optimal utility.
arXiv Detail & Related papers (2023-09-04T22:16:35Z) - Delegated Classification [21.384062337682185]
We propose a theoretical framework for incentive-aware delegation of machine learning tasks.
We define budget-optimal contracts and prove they take a simple threshold form under reasonable assumptions.
Empirically, we demonstrate that budget-optimal contracts can be constructed using small-scale data.
arXiv Detail & Related papers (2023-06-20T11:59:03Z) - Approaching Collateral Optimization for NISQ and Quantum-Inspired
Computing [0.0]
Collateral optimization refers to the systematic allocation of financial assets to satisfy obligations or secure transactions.
One of the common objectives is to minimise the cost of collateral required to mitigate the risk associated with a particular transaction or a portfolio of transactions.
arXiv Detail & Related papers (2023-05-25T18:01:04Z) - Diversifying Investments and Maximizing Sharpe Ratio: a novel QUBO
formulation [0.0]
We propose a new QUBO formulation for the task described and provide the mathematical details and required assumptions.
We derive results via the available QUBO solvers, as well as discussing the behaviour of Hybrid approaches to tackle large scale problems in the term.
arXiv Detail & Related papers (2023-02-23T19:15:44Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - Incentivizing Collaboration in Machine Learning via Synthetic Data
Rewards [26.850070556844628]
This paper presents a novel collaborative generative modeling (CGM) framework that incentivizes collaboration among self-interested parties to contribute data.
Distributing synthetic data as rewards offers task- and model-agnostic benefits for downstream learning tasks.
arXiv Detail & Related papers (2021-12-17T05:15:30Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients.
To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients.
It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients.
arXiv Detail & Related papers (2021-08-12T07:30:42Z) - Model-Augmented Q-learning [112.86795579978802]
We propose a MFRL framework that is augmented with the components of model-based RL.
Specifically, we propose to estimate not only the $Q$-values but also both the transition and the reward with a shared network.
We show that the proposed scheme, called Model-augmented $Q$-learning (MQL), obtains a policy-invariant solution which is identical to the solution obtained by learning with true reward.
arXiv Detail & Related papers (2021-02-07T17:56:50Z) - Collaborative Machine Learning with Incentive-Aware Model Rewards [32.43927226170119]
Collaborative machine learning (ML) is an appealing paradigm to build high-quality ML models by training on the aggregated data from many parties.
These parties are only willing to share their data when given enough incentives, such as a guaranteed fair reward based on their contributions.
This paper proposes to value a party's reward based on Shapley value and information gain on model parameters given its data.
arXiv Detail & Related papers (2020-10-24T06:20:55Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
We propose a cost-sensitive portfolio selection method with deep reinforcement learning.
Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations.
A new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning.
arXiv Detail & Related papers (2020-03-06T06:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.