Collaborative Machine Learning with Incentive-Aware Model Rewards
- URL: http://arxiv.org/abs/2010.12797v1
- Date: Sat, 24 Oct 2020 06:20:55 GMT
- Title: Collaborative Machine Learning with Incentive-Aware Model Rewards
- Authors: Rachael Hwee Ling Sim, Yehong Zhang, Mun Choon Chan, Bryan Kian Hsiang
Low
- Abstract summary: Collaborative machine learning (ML) is an appealing paradigm to build high-quality ML models by training on the aggregated data from many parties.
These parties are only willing to share their data when given enough incentives, such as a guaranteed fair reward based on their contributions.
This paper proposes to value a party's reward based on Shapley value and information gain on model parameters given its data.
- Score: 32.43927226170119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative machine learning (ML) is an appealing paradigm to build
high-quality ML models by training on the aggregated data from many parties.
However, these parties are only willing to share their data when given enough
incentives, such as a guaranteed fair reward based on their contributions. This
motivates the need for measuring a party's contribution and designing an
incentive-aware reward scheme accordingly. This paper proposes to value a
party's reward based on Shapley value and information gain on model parameters
given its data. Subsequently, we give each party a model as a reward. To
formally incentivize the collaboration, we define some desirable properties
(e.g., fairness and stability) which are inspired by cooperative game theory
but adapted for our model reward that is uniquely freely replicable. Then, we
propose a novel model reward scheme to satisfy fairness and trade off between
the desirable properties via an adjustable parameter. The value of each party's
model reward determined by our scheme is attained by injecting Gaussian noise
to the aggregated training data with an optimized noise variance. We
empirically demonstrate interesting properties of our scheme and evaluate its
performance using synthetic and real-world datasets.
Related papers
- Rethinking Bradley-Terry Models in Preference-Based Reward Modeling: Foundations, Theory, and Alternatives [14.401557416713315]
We revisit the foundations of using Bradley-Terry (BT) models in reward modeling.
We argue that the BT model is not a necessary choice from the perspective of downstream optimization.
We propose a simple and straightforward upper-bound algorithm, compatible with off-the-shelf binary classifiers.
arXiv Detail & Related papers (2024-11-07T18:57:03Z) - HAF-RM: A Hybrid Alignment Framework for Reward Model Training [51.59246299566669]
We propose a hybrid alignment framework HaF-RM for reward model training.
It offers a principled and effective approach to enhancing the performance and alignment of reward models.
arXiv Detail & Related papers (2024-07-04T23:26:56Z) - Incentives in Private Collaborative Machine Learning [56.84263918489519]
Collaborative machine learning involves training models on data from multiple parties.
We introduce differential privacy (DP) as an incentive.
We empirically demonstrate the effectiveness and practicality of our approach on synthetic and real-world datasets.
arXiv Detail & Related papers (2024-04-02T06:28:22Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Scaling Laws for Reward Model Overoptimization [19.93331579503503]
We study how the gold reward model score changes as we optimize against the proxy reward model using either reinforcement learning or best-of-$n$ sampling.
We also study the effect on this relationship of the size of the reward model dataset, the number of reward model and policy parameters, and the coefficient of the KL penalty added to the reward in the reinforcement learning setup.
arXiv Detail & Related papers (2022-10-19T17:56:10Z) - Incentivizing Collaboration in Machine Learning via Synthetic Data
Rewards [26.850070556844628]
This paper presents a novel collaborative generative modeling (CGM) framework that incentivizes collaboration among self-interested parties to contribute data.
Distributing synthetic data as rewards offers task- and model-agnostic benefits for downstream learning tasks.
arXiv Detail & Related papers (2021-12-17T05:15:30Z) - Model-Augmented Q-learning [112.86795579978802]
We propose a MFRL framework that is augmented with the components of model-based RL.
Specifically, we propose to estimate not only the $Q$-values but also both the transition and the reward with a shared network.
We show that the proposed scheme, called Model-augmented $Q$-learning (MQL), obtains a policy-invariant solution which is identical to the solution obtained by learning with true reward.
arXiv Detail & Related papers (2021-02-07T17:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.