ViSymRe: Vision-guided Multimodal Symbolic Regression
- URL: http://arxiv.org/abs/2412.11139v1
- Date: Sun, 15 Dec 2024 10:05:31 GMT
- Title: ViSymRe: Vision-guided Multimodal Symbolic Regression
- Authors: Da Li, Junping Yin, Jin Xu, Xinxin Li, Juan Zhang,
- Abstract summary: We propose a vision-guided multimodal symbolic regression model called ViSymRe.
It integrates vision, symbol and numeric to enhance symbolic regression.
It emphasizes the simplicity and structural rationality of the equations rather than merely numerical fitting.
- Score: 12.486013697763228
- License:
- Abstract: Symbolic regression automatically searches for mathematical equations to reveal underlying mechanisms within datasets, offering enhanced interpretability compared to black box models. Traditionally, symbolic regression has been considered to be purely numeric-driven, with insufficient attention given to the potential contributions of visual information in augmenting this process. When dealing with high-dimensional and complex datasets, existing symbolic regression models are often inefficient and tend to generate overly complex equations, making subsequent mechanism analysis complicated. In this paper, we propose the vision-guided multimodal symbolic regression model, called ViSymRe, that systematically explores how visual information can improve various metrics of symbolic regression. Compared to traditional models, our proposed model has the following innovations: (1) It integrates three modalities: vision, symbol and numeric to enhance symbolic regression, enabling the model to benefit from the strengths of each modality; (2) It establishes a meta-learning framework that can learn from historical experiences to efficiently solve new symbolic regression problems; (3) It emphasizes the simplicity and structural rationality of the equations rather than merely numerical fitting. Extensive experiments show that our proposed model exhibits strong generalization capability and noise resistance. The equations it generates outperform state-of-the-art numeric-only baselines in terms of fitting effect, simplicity and structural accuracy, thus being able to facilitate accurate mechanism analysis and the development of theoretical models.
Related papers
- Test-time regression: a unifying framework for designing sequence models with associative memory [24.915262407519876]
We show that effective sequence models must be able to perform associative recall.
Our key insight is that memorizing input tokens through an associative memory is equivalent to performing regression at test-time.
We show numerous recent architectures -- including linear attention models, their gated variants, state-space models, online learners, and softmax attention -- emerge naturally as specific approaches to test-time regression.
arXiv Detail & Related papers (2025-01-21T18:32:31Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - Discovering interpretable elastoplasticity models via the neural
polynomial method enabled symbolic regressions [0.0]
Conventional neural network elastoplasticity models are often perceived as lacking interpretability.
This paper introduces a two-step machine learning approach that returns mathematical models interpretable by human experts.
arXiv Detail & Related papers (2023-07-24T22:22:32Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Inferring the Structure of Ordinary Differential Equations [12.202646598683888]
We extend the approach by (Udrescu et al., 2020) called AIFeynman to the dynamic setting to perform symbolic regression on ODE systems.
We compare this extension to state-of-the-art approaches for symbolic regression empirically on several dynamical systems for which the ground truth equations of increasing complexity are available.
arXiv Detail & Related papers (2021-07-05T07:55:05Z) - SymbolicGPT: A Generative Transformer Model for Symbolic Regression [3.685455441300801]
We present SymbolicGPT, a novel transformer-based language model for symbolic regression.
We show that our model performs strongly compared to competing models with respect to the accuracy, running time, and data efficiency.
arXiv Detail & Related papers (2021-06-27T03:26:35Z) - Neural Symbolic Regression that Scales [58.45115548924735]
We introduce the first symbolic regression method that leverages large scale pre-training.
We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs.
arXiv Detail & Related papers (2021-06-11T14:35:22Z) - Nonparametric Trace Regression in High Dimensions via Sign Series
Representation [13.37650464374017]
We develop a framework for nonparametric trace regression models via structured sign series representations of high dimensional functions.
In the context of matrix completion, our framework leads to a substantially richer model based on what we coin as the "sign rank" of a matrix.
arXiv Detail & Related papers (2021-05-04T22:20:00Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.