論文の概要: AD-LLM: Benchmarking Large Language Models for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2412.11142v1
- Date: Sun, 15 Dec 2024 10:22:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:45.482000
- Title: AD-LLM: Benchmarking Large Language Models for Anomaly Detection
- Title(参考訳): AD-LLM: 異常検出のための大規模言語モデルのベンチマーク
- Authors: Tiankai Yang, Yi Nian, Shawn Li, Ruiyao Xu, Yuangang Li, Jiaqi Li, Zhuo Xiao, Xiyang Hu, Ryan Rossi, Kaize Ding, Xia Hu, Yue Zhao,
- Abstract要約: 本稿では,大規模な言語モデルが異常検出にどのように役立つかを評価する最初のベンチマークであるAD-LLMを紹介する。
我々は、ゼロショット検出、LLMの事前訓練された知識を用いて、タスク固有のトレーニングなしでADを実行すること、データ拡張、ADモデルを改善するために合成データとカテゴリ記述を生成すること、LLMを使用して教師なしADモデルを提案するモデル選択の3つの主要なタスクについて検討する。
- 参考スコア(独自算出の注目度): 50.57641458208208
- License:
- Abstract: Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring. Within natural language processing (NLP), AD helps detect issues like spam, misinformation, and unusual user activity. Although large language models (LLMs) have had a strong impact on tasks such as text generation and summarization, their potential in AD has not been studied enough. This paper introduces AD-LLM, the first benchmark that evaluates how LLMs can help with NLP anomaly detection. We examine three key tasks: (i) zero-shot detection, using LLMs' pre-trained knowledge to perform AD without tasks-specific training; (ii) data augmentation, generating synthetic data and category descriptions to improve AD models; and (iii) model selection, using LLMs to suggest unsupervised AD models. Through experiments with different datasets, we find that LLMs can work well in zero-shot AD, that carefully designed augmentation methods are useful, and that explaining model selection for specific datasets remains challenging. Based on these results, we outline six future research directions on LLMs for AD.
- Abstract(参考訳): 異常検出(AD)は、不正検出、医療診断、産業監視など、現実の多くの用途において重要な機械学習タスクである。
自然言語処理(NLP)において、ADはスパム、誤情報、異常なユーザー活動などの問題を検出するのに役立つ。
大規模言語モデル(LLM)はテキスト生成や要約といったタスクに強い影響を与えてきたが、ADのポテンシャルは十分に研究されていない。
本稿では,LPMがNLP異常検出にどのように役立つかを評価する最初のベンチマークであるAD-LLMを紹介する。
主な課題は3つある。
i) LLMの事前訓練知識を用いて,タスク固有の訓練を伴わずにADを実行するゼロショット検出
2ADモデルを改善するため、データ拡張、合成データ及びカテゴリ記述の作成
3) LLM を用いて教師なしAD モデルを提案するモデル選択。
異なるデータセットを用いた実験により、LCMはゼロショットADでうまく機能し、慎重に設計された拡張手法は有用であり、特定のデータセットに対するモデル選択を説明することは困難であることがわかった。
これらの結果に基づき,本研究の今後の6つの方向について概説する。
関連論文リスト
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - Exploring Large Language Models for Feature Selection: A Data-centric Perspective [17.99621520553622]
大規模言語モデル(LLM)は様々なドメインに影響を与え、例外的な少数ショットとゼロショットの学習機能を活用している。
我々は,データ中心の観点からLLMに基づく特徴選択手法を探求し,理解することを目指している。
本研究は,テキストベースの特徴選択手法の有効性とロバスト性を強調し,実世界の医療応用を用いてその可能性を示す。
論文 参考訳(メタデータ) (2024-08-21T22:35:19Z) - Automated Detection of Algorithm Debt in Deep Learning Frameworks: An Empirical Study [5.6340045820686155]
以前の研究では、ML/DLモデルが、自己受け入れ技術的負債(SATD)と呼ばれるソースコードコメントから技術的負債を検出できることが示されている。
我々の目標は、様々なML/DLモデルのAD検出性能を改善することである。
論文 参考訳(メタデータ) (2024-08-20T04:06:58Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Large Language Models can Deliver Accurate and Interpretable Time Series Anomaly Detection [34.40206965758026]
時系列異常検出(TSAD)は、標準トレンドから逸脱する非定型パターンを特定することで、様々な産業において重要な役割を果たす。
従来のTSADモデルは、しばしばディープラーニングに依存しており、広範なトレーニングデータを必要とし、ブラックボックスとして動作する。
LLMADは,Large Language Models (LLMs) を用いて,高精度かつ解釈可能なTSAD結果を提供する新しいTSAD手法である。
論文 参考訳(メタデータ) (2024-05-24T09:07:02Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示している。
従来の研究は、注釈付きデータを生成してLPMの知識をより小さなモデルに抽出しようと試みてきた。
EvoKD: Evolving Knowledge Distillationを提案する。これは、アクティブラーニングの概念を利用して、大規模言語モデルを用いたデータ生成のプロセスをインタラクティブに強化する。
論文 参考訳(メタデータ) (2024-03-11T03:55:24Z) - Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls
and Opportunities [50.231837687221685]
自己教師付き学習(SSL)は、機械学習とその多くの現実世界のアプリケーションに変化をもたらした。
非教師なし異常検出(AD)は、自己生成性擬似異常によりSSLにも乗じている。
論文 参考訳(メタデータ) (2023-08-28T07:55:01Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - Data-Efficient and Interpretable Tabular Anomaly Detection [54.15249463477813]
本稿では,ホワイトボックスモデルクラスである一般化付加モデルを適用し,異常を検出する新しいフレームワークを提案する。
さらに、提案フレームワークであるDIADは、ラベル付きデータの少量を組み込んで、半教師付き設定における異常検出性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2022-03-03T22:02:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。