論文の概要: Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate
- arxiv url: http://arxiv.org/abs/2412.11257v1
- Date: Sun, 15 Dec 2024 17:41:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:59:47.241294
- Title: Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate
- Title(参考訳): 予測強化型モンテカルロ:制御変数の機械学習ビュー
- Authors: Fengpei Li, Haoxian Chen, Jiahe Lin, Arkin Gupta, Xiaowei Tan, Gang Xu, Yuriy Nevmyvaka, Agostino Capponi, Henry Lam,
- Abstract要約: 予測強化モンテカルロ(PEMC)フレームワークを開発した。
PEMCは、コストを意識したばらつきの低減、平均的な知識の不要化を目標としている。
PEMCは2種類のエキゾチックオプション価格問題により有効性を示した。
- 参考スコア(独自算出の注目度): 9.10215751465523
- License:
- Abstract: Despite being an essential tool across engineering and finance, Monte Carlo simulation can be computationally intensive, especially in large-scale, path-dependent problems that hinder straightforward parallelization. A natural alternative is to replace simulation with machine learning or surrogate prediction, though this introduces challenges in understanding the resulting errors.We introduce a Prediction-Enhanced Monte Carlo (PEMC) framework where we leverage machine learning prediction as control variates, thus maintaining unbiased evaluations instead of the direct use of ML predictors. Traditional control variate methods require knowledge of means and focus on per-sample variance reduction. In contrast, PEMC aims at overall cost-aware variance reduction, eliminating the need for mean knowledge. PEMC leverages pre-trained neural architectures to construct effective control variates and replaces computationally expensive sample-path generation with efficient neural network evaluations. This allows PEMC to address scenarios where no good control variates are known. We showcase the efficacy of PEMC through two production-grade exotic option-pricing problems: swaption pricing in HJM model and the variance swap pricing in a stochastic local volatility model.
- Abstract(参考訳): モンテカルロシミュレーションは工学と金融に欠かせないツールであるにもかかわらず、特に直接並列化を妨げる大規模で経路に依存した問題において、計算に重きを置くことができる。
自然な方法は、シミュレーションを機械学習や代理予測に置き換えることであるが、これは結果の誤りを理解する上での課題をもたらす。我々は、機械学習予測を制御変数として活用する予測強化モンテカルロ(PEMC)フレームワークを導入し、機械学習予測を直接使用する代わりにバイアスのない評価を維持する。
従来の制御変数法は、手段の知識を必要とし、サンプルごとの分散還元に焦点を当てる。
対照的にPEMCは、コストを意識したばらつきの低減、平均的知識の不要化を目標としている。
PEMCはトレーニング済みのニューラルネットワークアーキテクチャを活用して、効率的な制御変数を構築し、計算コストのかかるサンプルパス生成を効率的なニューラルネットワーク評価に置き換える。
これによりPEMCは、良好な制御変数が知られていないシナリオに対処できる。
本稿では,HJMモデルにおける交換価格と,確率的局所ボラティリティモデルにおける分散スワップ価格という,生産段階のエキゾチックオプション価格問題によるPEMCの有効性を示す。
関連論文リスト
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
実世界の機械学習システムは、基礎となるデータ生成プロセスの分散シフトによって、モデルの性能劣化に遭遇することが多い。
概念のドリフト適応のような既存のシフトへのアプローチは、その理性に依存しない性質によって制限される。
我々はこれらの制限を克服するために自己修復機械学習(SHML)を提案する。
論文 参考訳(メタデータ) (2024-10-31T20:05:51Z) - Pricing American Options using Machine Learning Algorithms [0.0]
本研究は,モンテカルロシミュレーションを用いて,機械学習アルゴリズムのアメリカ人オプションの価格設定への応用について検討する。
Black-Scholes-Mertonフレームワークのような伝統的なモデルは、しばしばアメリカの選択肢の複雑さに適切に対処できない。
モンテカルロ法とLast Square Methodを併用して機械学習を行った。
論文 参考訳(メタデータ) (2024-09-05T02:52:11Z) - Robust Uncertainty Quantification Using Conformalised Monte Carlo
Prediction [6.86690482279886]
不確実量化(UQ)手法は、予測毎のモデルの信頼性を推定する。
我々は新しい適応モンテカルロ(MC)ドロップアウト法と共形予測(CP)を組み合わせた新しいハイブリッドUQ手法であるMC-CPを紹介する。
MC-CPは、分類と回帰のベンチマークにおいて、MCドロップアウト、RAPS、CQRといった高度なUQ手法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:07:01Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
予測可能なMDP抽象化(PMA)を提案する。
元のMDPで予測モデルを訓練する代わりに、学習されたアクション空間を持つ変換MDPでモデルを訓練する。
我々はPMAを理論的に解析し、PMAが以前の教師なしモデルベースRLアプローチよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-02-08T07:37:51Z) - Interpretability in Safety-Critical FinancialTrading Systems [15.060749321774136]
2020年、世界で最も洗練された量子ヘッジファンドのいくつかが損失を被った。
我々は、トレーディングモデルの予測をどのように操作できるかを正確に評価するために、勾配に基づくアプローチを実装した。
提案手法では,入出力分布に大きな負のずれが生じる,サンプル内入力設定のように見えることが判明した。
論文 参考訳(メタデータ) (2021-09-24T17:05:58Z) - Blending MPC & Value Function Approximation for Efficient Reinforcement
Learning [42.429730406277315]
モデル予測制御(MPC)は、複雑な実世界のシステムを制御する強力なツールである。
モデルフリー強化学習(RL)によるMPC改善のためのフレームワークを提案する。
我々は,本手法がmpcに匹敵する性能と真のダイナミクスを両立できることを示す。
論文 参考訳(メタデータ) (2020-12-10T11:32:01Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
本稿では,制御,カーネル,ニューラルネットワークを用いた既存のアプローチを包含し,一般化するフレームワークを提案する。
新たな理論的結果は、達成可能な分散還元に関する洞察を与えるために提示され、ベイズ推定への応用を含む経験的評価が支持される。
論文 参考訳(メタデータ) (2020-06-12T22:03:25Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。