Grassmannian Geometry Meets Dynamic Mode Decomposition in DMD-GEN: A New Metric for Mode Collapse in Time Series Generative Models
- URL: http://arxiv.org/abs/2412.11292v1
- Date: Sun, 15 Dec 2024 19:53:17 GMT
- Title: Grassmannian Geometry Meets Dynamic Mode Decomposition in DMD-GEN: A New Metric for Mode Collapse in Time Series Generative Models
- Authors: Amime Mohamed Aboussalah, Yassine Abbahaddou,
- Abstract summary: Generative models like Generative Adversarial Networks (GANs) and Variational Autoencoders (Es) often fail to capture the full diversity of their training data, leading to mode collapse.
We introduce a new definition of mode collapse specific to time series and propose a novel metric, DMD-GEN, to quantify its severity.
- Score: 0.0
- License:
- Abstract: Generative models like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) often fail to capture the full diversity of their training data, leading to mode collapse. While this issue is well-explored in image generation, it remains underinvestigated for time series data. We introduce a new definition of mode collapse specific to time series and propose a novel metric, DMD-GEN, to quantify its severity. Our metric utilizes Dynamic Mode Decomposition (DMD), a data-driven technique for identifying coherent spatiotemporal patterns, and employs Optimal Transport between DMD eigenvectors to assess discrepancies between the underlying dynamics of the original and generated data. This approach not only quantifies the preservation of essential dynamic characteristics but also provides interpretability by pinpointing which modes have collapsed. We validate DMD-GEN on both synthetic and real-world datasets using various generative models, including TimeGAN, TimeVAE, and DiffusionTS. The results demonstrate that DMD-GEN correlates well with traditional evaluation metrics for static data while offering the advantage of applicability to dynamic data. This work offers for the first time a definition of mode collapse for time series, improving understanding, and forming the basis of our tool for assessing and improving generative models in the time series domain.
Related papers
- Entropic Regression DMD (ERDMD) Discovers Informative Sparse and Nonuniformly Time Delayed Models [0.0]
We present a method which determines optimal multi-step dynamic mode decomposition models via entropic regression.
We develop a method that produces high fidelity time-delay DMD models that allow for nonuniform time space.
These models are shown to be highly efficient and robust.
arXiv Detail & Related papers (2024-06-17T20:02:43Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Bagging, optimized dynamic mode decomposition (BOP-DMD) for robust,
stable forecasting with spatial and temporal uncertainty-quantification [2.741266294612776]
Dynamic mode decomposition (DMD) provides a framework for learning a best-fit linear dynamics model over snapshots of temporal, or-temporal, data.
The majority of DMD algorithms are prone to bias errors from noisy measurements of the dynamics, leading to poor model fits and unstable forecasting capabilities.
The optimized DMD algorithm minimizes the model bias with a variable projection optimization, thus leading to stabilized forecasting capabilities.
arXiv Detail & Related papers (2021-07-22T18:14:20Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
We propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations.
It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures.
A structured inference network is also designed for enabling inductive analysis.
arXiv Detail & Related papers (2021-03-03T04:10:07Z) - Discriminant Dynamic Mode Decomposition for Labeled Spatio-Temporal Data
Collections [16.69145658813375]
We propose a new method for extracting coherent patterns from labeled-temporal data collections.
We achieve such pattern extraction by incorporating discriminant analysis into Dynamic mode decomposition.
We illustrate our method using a synthetic dataset and several real-world datasets.
arXiv Detail & Related papers (2021-02-19T15:12:59Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.