UIBDiffusion: Universal Imperceptible Backdoor Attack for Diffusion Models
- URL: http://arxiv.org/abs/2412.11441v2
- Date: Tue, 31 Dec 2024 05:07:06 GMT
- Title: UIBDiffusion: Universal Imperceptible Backdoor Attack for Diffusion Models
- Authors: Yuning Han, Bingyin Zhao, Rui Chu, Feng Luo, Biplab Sikdar, Yingjie Lao,
- Abstract summary: diffusion models (DMs) are vulnerable to backdoor attacks.
We propose UIBDiffusion, the universal imperceptible backdoor attack for DMs.
- Score: 23.123721322735445
- License:
- Abstract: Recent studies show that diffusion models (DMs) are vulnerable to backdoor attacks. Existing backdoor attacks impose unconcealed triggers (e.g., a gray box and eyeglasses) that contain evident patterns, rendering remarkable attack effects yet easy detection upon human inspection and defensive algorithms. While it is possible to improve stealthiness by reducing the strength of the backdoor, doing so can significantly compromise its generality and effectiveness. In this paper, we propose UIBDiffusion, the universal imperceptible backdoor attack for diffusion models, which allows us to achieve superior attack and generation performance while evading state-of-the-art defenses. We propose a novel trigger generation approach based on universal adversarial perturbations (UAPs) and reveal that such perturbations, which are initially devised for fooling pre-trained discriminative models, can be adapted as potent imperceptible backdoor triggers for DMs. We evaluate UIBDiffusion on multiple types of DMs with different kinds of samplers across various datasets and targets. Experimental results demonstrate that UIBDiffusion brings three advantages: 1) Universality, the imperceptible trigger is universal (i.e., image and model agnostic) where a single trigger is effective to any images and all diffusion models with different samplers; 2) Utility, it achieves comparable generation quality (e.g., FID) and even better attack success rate (i.e., ASR) at low poison rates compared to the prior works; and 3) Undetectability, UIBDiffusion is plausible to human perception and can bypass Elijah and TERD, the SOTA defenses against backdoors for DMs. We will release our backdoor triggers and code.
Related papers
- A4O: All Trigger for One sample [10.78460062665304]
We show that proposed backdoor defenders often rely on the assumption that triggers would appear in a unified way.
In this paper, we show that this naive assumption can create a loophole, allowing more sophisticated backdoor attacks to bypass.
We design a novel backdoor attack mechanism that incorporates multiple types of backdoor triggers, focusing on stealthiness and effectiveness.
arXiv Detail & Related papers (2025-01-13T10:38:58Z) - Data Free Backdoor Attacks [83.10379074100453]
DFBA is a retraining-free and data-free backdoor attack without changing the model architecture.
We verify that our injected backdoor is provably undetectable and unchosen by various state-of-the-art defenses.
Our evaluation on multiple datasets demonstrates that our injected backdoor: 1) incurs negligible classification loss, 2) achieves 100% attack success rates, and 3) bypasses six existing state-of-the-art defenses.
arXiv Detail & Related papers (2024-12-09T05:30:25Z) - DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
We propose DMGNN against out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks.
DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation.
DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance.
arXiv Detail & Related papers (2024-10-18T01:08:03Z) - PureDiffusion: Using Backdoor to Counter Backdoor in Generative Diffusion Models [5.957580737396457]
Diffusion models (DMs) are advanced deep learning models that achieved state-of-the-art capability on a wide range of generative tasks.
Recent studies have shown their vulnerability regarding backdoor attacks, in which backdoored DMs consistently generate a designated result called backdoor target.
We introduce PureDiffusion, a novel backdoor defense framework that can efficiently detect backdoor attacks by inverting backdoor triggers embedded in DMs.
arXiv Detail & Related papers (2024-09-20T23:19:26Z) - Towards Unified Robustness Against Both Backdoor and Adversarial Attacks [31.846262387360767]
Deep Neural Networks (DNNs) are known to be vulnerable to both backdoor and adversarial attacks.
This paper reveals that there is an intriguing connection between backdoor and adversarial attacks.
A novel Progressive Unified Defense algorithm is proposed to defend against backdoor and adversarial attacks simultaneously.
arXiv Detail & Related papers (2024-05-28T07:50:00Z) - Elijah: Eliminating Backdoors Injected in Diffusion Models via
Distribution Shift [86.92048184556936]
We propose the first backdoor detection and removal framework for DMs.
We evaluate our framework Elijah on hundreds of DMs of 3 types including DDPM, NCSN and LDM.
Our approach can have close to 100% detection accuracy and reduce the backdoor effects to close to zero without significantly sacrificing the model utility.
arXiv Detail & Related papers (2023-11-27T23:58:56Z) - Stealthy Backdoor Attack via Confidence-driven Sampling [49.72680157684523]
Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios.
Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples.
We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks.
arXiv Detail & Related papers (2023-10-08T18:57:36Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.