論文の概要: LineArt: A Knowledge-guided Training-free High-quality Appearance Transfer for Design Drawing with Diffusion Model
- arxiv url: http://arxiv.org/abs/2412.11519v1
- Date: Mon, 16 Dec 2024 07:54:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:57:05.900771
- Title: LineArt: A Knowledge-guided Training-free High-quality Appearance Transfer for Design Drawing with Diffusion Model
- Title(参考訳): LineArt: 拡散モデルによる設計図面作成のための知識誘導型学習不要な高品質外観変換
- Authors: Xi Wang, Hongzhen Li, Heng Fang, Yichen Peng, Haoran Xie, Xi Yang, Chuntao Li,
- Abstract要約: 複雑な外観を詳細な設計図に転送するフレームワークであるLineArtを紹介する。
階層的な視覚認知をシミュレートすることで、構造的精度を維持しつつ、高忠実な外観を生成する。
正確な3Dモデリング、物理的特性仕様、ネットワークトレーニングは必要とせず、設計作業に便利である。
- 参考スコア(独自算出の注目度): 8.938617090786494
- License:
- Abstract: Image rendering from line drawings is vital in design and image generation technologies reduce costs, yet professional line drawings demand preserving complex details. Text prompts struggle with accuracy, and image translation struggles with consistency and fine-grained control. We present LineArt, a framework that transfers complex appearance onto detailed design drawings, facilitating design and artistic creation. It generates high-fidelity appearance while preserving structural accuracy by simulating hierarchical visual cognition and integrating human artistic experience to guide the diffusion process. LineArt overcomes the limitations of current methods in terms of difficulty in fine-grained control and style degradation in design drawings. It requires no precise 3D modeling, physical property specs, or network training, making it more convenient for design tasks. LineArt consists of two stages: a multi-frequency lines fusion module to supplement the input design drawing with detailed structural information and a two-part painting process for Base Layer Shaping and Surface Layer Coloring. We also present a new design drawing dataset ProLines for evaluation. The experiments show that LineArt performs better in accuracy, realism, and material precision compared to SOTAs.
- Abstract(参考訳): ライン描画による画像描画は設計において不可欠であり、画像生成技術はコストを削減するが、プロのライン描画は複雑な詳細を保存する必要がある。
テキストは正確さに苦しむし、画像翻訳は一貫性ときめ細かい制御に苦しむ。
複雑な外観を詳細なデザイン図面に転送し、デザインと芸術的創造を容易にするフレームワークであるLineArtを紹介します。
階層的な視覚認知をシミュレートし、人間の芸術的体験を統合して拡散過程を導くことにより、構造的精度を維持しつつ、高忠実な外観を生成する。
LineArtは、設計図面におけるきめ細かい制御とスタイル劣化の難しさの観点から、現在の手法の限界を克服している。
正確な3Dモデリング、物理的特性仕様、ネットワークトレーニングは必要とせず、設計作業に便利である。
LineArtは、入力設計図面を詳細な構造情報で補完する多周波線融合モジュールと、ベース層形状と表面層色付けのための2部塗装プロセスの2段階で構成されている。
また,評価のための新しいデザイン描画データセットProLinesを提案する。
実験の結果、LineArtはSOTAと比較して精度、リアリズム、材料精度が良いことがわかった。
関連論文リスト
- Hyperstroke: A Novel High-quality Stroke Representation for Assistive Artistic Drawing [12.71408421022756]
細かなストロークの詳細を正確に把握するための新しいストローク表現であるハイパーストロークを導入する。
直感的でユーザフレンドリな描画アプリケーションを実現するために,トランスフォーマーアーキテクチャによる支援描画をモデル化することを提案する。
論文 参考訳(メタデータ) (2024-08-18T04:05:53Z) - Artistic Intelligence: A Diffusion-Based Framework for High-Fidelity Landscape Painting Synthesis [2.205829309604458]
LPGenはランドスケープ・ペインティング・ジェネレーションに特化して設計された新しい拡散モデルである。
LPGenは、構造的およびスタイリスティックな特徴を独立して処理する分離されたクロスアテンションメカニズムを導入している。
モデルは高解像度のランドスケープ画像のキュレートされたデータセットに事前トレーニングされ、異なる芸術様式で分類され、詳細で一貫した出力を確保するために微調整される。
論文 参考訳(メタデータ) (2024-07-24T12:32:24Z) - Towards Highly Realistic Artistic Style Transfer via Stable Diffusion with Step-aware and Layer-aware Prompt [12.27693060663517]
芸術的スタイルの転送は、学習した芸術的スタイルを任意のコンテンツイメージに転送することを目的としており、芸術的なスタイル化されたイメージを生成する。
LSASTと呼ばれる,事前学習型拡散型アートスタイルトランスファー手法を提案する。
提案手法は,最先端の芸術的スタイル伝達法よりも,よりリアルな芸術的スタイル化画像を生成することができる。
論文 参考訳(メタデータ) (2024-04-17T15:28:53Z) - HAIFIT: Human-to-AI Fashion Image Translation [6.034505799418777]
本稿では,スケッチを高忠実なライフスタイルの衣料品画像に変換する新しいアプローチであるHAIFITを紹介する。
本手法は, ファッションデザインに欠かせない, 独特のスタイルの保存に優れ, 細部が複雑である。
論文 参考訳(メタデータ) (2024-03-13T16:06:07Z) - CustomSketching: Sketch Concept Extraction for Sketch-based Image
Synthesis and Editing [21.12815542848095]
大規模なテキスト・ツー・イメージ(T2I)モデルのパーソナライズ技術により、ユーザーは参照画像から新しい概念を組み込むことができる。
既存の手法は主にテキスト記述に依存しており、カスタマイズされた画像の制御が制限されている。
スケッチを直感的で汎用的な表現として識別し,このような制御を容易にする。
論文 参考訳(メタデータ) (2024-02-27T15:52:59Z) - QuantArt: Quantizing Image Style Transfer Towards High Visual Fidelity [94.5479418998225]
視覚的忠実度の高いスタイリングのためのQuantArtと呼ばれる新しいスタイル転送フレームワークを提案する。
本フレームワークは,既存のスタイル転送方式と比較して,視覚的忠実度を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T17:09:53Z) - Quality Metric Guided Portrait Line Drawing Generation from Unpaired
Training Data [88.78171717494688]
本研究では,顔画像から肖像画への自動変換手法を提案する。
本手法は,(1)1つのネットワークを用いて複数のスタイルで高品質な肖像画を生成することを学習し,(2)トレーニングデータに見つからない「新しいスタイル」の肖像画を生成する。
論文 参考訳(メタデータ) (2022-02-08T06:49:57Z) - DeepFacePencil: Creating Face Images from Freehand Sketches [77.00929179469559]
既存の画像から画像への変換には、大規模なスケッチと画像のデータセットが必要である。
本稿では,手描きスケッチから写真リアルな顔画像を生成するための効果的なツールであるDeepFacePencilを提案する。
論文 参考訳(メタデータ) (2020-08-31T03:35:21Z) - Learning to Caricature via Semantic Shape Transform [95.25116681761142]
本稿では,意味的形状変換に基づくアルゴリズムを提案する。
提案手法は,顔の構造を維持しつつ,視覚的に心地よい形状の誇張を表現できることを示す。
論文 参考訳(メタデータ) (2020-08-12T03:41:49Z) - Modeling Artistic Workflows for Image Generation and Editing [83.43047077223947]
与えられた芸術的ワークフローに従う生成モデルを提案する。
既存の芸術作品の多段画像編集だけでなく、多段画像生成も可能である。
論文 参考訳(メタデータ) (2020-07-14T17:54:26Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
スケッチベースの画像編集は、人間の描いたスケッチによって提供される構造情報に基づいて、写真を合成し、修正することを目的としている。
Deep Plastic Surgeryは、手書きのスケッチ入力を使って画像のインタラクティブな編集を可能にする、新しくて堅牢で制御可能な画像編集フレームワークである。
論文 参考訳(メタデータ) (2020-01-09T08:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。