論文の概要: Probability-Informed Machine Learning
- arxiv url: http://arxiv.org/abs/2412.11526v1
- Date: Mon, 16 Dec 2024 08:01:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:35.954449
- Title: Probability-Informed Machine Learning
- Title(参考訳): 確率インフォームド機械学習
- Authors: Mohsen Rashki,
- Abstract要約: 本研究では,出力関数の構造に関するドメイン知識にヒントを得た,新しい機械学習パラダイムを提案する。
提案手法は,対象変数の確率的構造を学習プロセスに統合する。
この方法は、モデルの精度を高め、オーバーフィットおよびアンダーフィットのリスクを軽減する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning (ML) has emerged as a powerful tool for tackling complex regression and classification tasks, yet its success often hinges on the quality of training data. This study introduces a novel ML paradigm inspired by domain knowledge of the structure of output function, akin to physics-informed ML, but rooted in probabilistic principles rather than physical laws. The proposed approach integrates the probabilistic structure of the target variable (such as its cumulative distribution function) into the training process. This probabilistic information is obtained from historical data or estimated using structural reliability methods during experimental design. By embedding domain-specific probabilistic insights into the learning process, the method enhances model accuracy and mitigates risks of overfitting and underfitting. Applications in regression, image denoising, and classification demonstrate the effectiveness of the approach in addressing real-world problems.
- Abstract(参考訳): マシンラーニング(ML)は、複雑な回帰処理や分類タスクに対処するための強力なツールとして登場したが、その成功はしばしば、トレーニングデータの品質に依存している。
本研究では,物理インフォームドMLに似た出力関数の構造に関するドメイン知識から着想を得た新しいMLパラダイムを紹介するが,物理法則よりも確率論的原理に根ざしている。
提案手法は,対象変数(累積分布関数など)の確率構造を学習プロセスに統合する。
この確率情報は、過去のデータから得られるか、または、実験設計中に構造信頼性の手法を用いて推定される。
ドメイン固有の確率的洞察を学習プロセスに埋め込むことで、モデルの精度を高め、過度な適合と不適合のリスクを軽減する。
回帰、画像の復調、分類の応用は、現実世界の問題に対処するアプローチの有効性を示す。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - The role of data-induced randomness in quantum machine learning classification tasks [0.0]
平均ランダムネスと分類マージンの概念を融合させることにより、二項分類タスク(クラスマージン)の計量を導入する。
この計量は、与えられたデータ埋め込みマップの分類精度と、データ誘導ランダムネスを解析的に結合する。
我々は、クラスマージンを通じてデータ埋め込み戦略をベンチマークし、データ誘発ランダム性が分類性能に制限を与えることを示した。
論文 参考訳(メタデータ) (2024-11-28T17:26:35Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
我々は回帰アルゴリズムとモデル予測の周囲に定義された区間内に存在する真のラベルの確率を計算するリスク評価タスクに焦点をあてる。
そこで,本研究では,正のラベルを所定の確率で含むことが保証される予測区間を提供する共形予測手法を用いてリスク評価問題を解決する。
論文 参考訳(メタデータ) (2023-10-05T13:57:24Z) - Dynamic Model Agnostic Reliability Evaluation of Machine-Learning
Methods Integrated in Instrumentation & Control Systems [1.8978726202765634]
データ駆動型ニューラルネットワークベースの機械学習アルゴリズムの信頼性は十分に評価されていない。
National Institute for Standards and Technologyの最近のレポートでは、MLにおける信頼性は採用にとって重要な障壁となっている。
トレーニングデータセットにアウト・オブ・ディストリビューション検出を組み込むことにより、ML予測の相対的信頼性を評価するためのリアルタイムモデル非依存手法を実証する。
論文 参考訳(メタデータ) (2023-08-08T18:25:42Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
提案手法は,複数の視覚タスクにおけるネットワーク一般化能力を常に改善することを示す。
我々の手法は単純だが有効であり、トレーニング可能なパラメータや損失制約を伴わずにネットワークに容易に統合できる。
論文 参考訳(メタデータ) (2023-01-16T14:25:02Z) - Automated Learning of Interpretable Models with Quantified Uncertainty [0.0]
我々は遺伝子プログラミングに基づくシンボリックレグレッション(GPSR)の新しい枠組みを導入する。
GPSRはモデルエビデンスを用いて、進化の選択段階における置換確率を定式化する。
従来のGPSR実装と比較して、解釈可能性の向上、ノイズに対する堅牢性の向上、オーバーフィッティングの低減が示されている。
論文 参考訳(メタデータ) (2022-04-12T19:56:42Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。