Region-Based Optimization in Continual Learning for Audio Deepfake Detection
- URL: http://arxiv.org/abs/2412.11551v1
- Date: Mon, 16 Dec 2024 08:34:09 GMT
- Title: Region-Based Optimization in Continual Learning for Audio Deepfake Detection
- Authors: Yujie Chen, Jiangyan Yi, Cunhang Fan, Jianhua Tao, Yong Ren, Siding Zeng, Chu Yuan Zhang, Xinrui Yan, Hao Gu, Jun Xue, Chenglong Wang, Zhao Lv, Xiaohui Zhang,
- Abstract summary: We propose a continual learning method named Region-Based Optimization (RegO) for audio deepfake detection.
Experimental results show our method achieves a 21.3% improvement in EER over the state-of-the-art continual learning approach RWM for audio deepfake detection.
The effectiveness of RegO extends beyond the audio deepfake detection domain, showing potential significance in other tasks, such as image recognition.
- Score: 47.70461149484284
- License:
- Abstract: Rapid advancements in speech synthesis and voice conversion bring convenience but also new security risks, creating an urgent need for effective audio deepfake detection. Although current models perform well, their effectiveness diminishes when confronted with the diverse and evolving nature of real-world deepfakes. To address this issue, we propose a continual learning method named Region-Based Optimization (RegO) for audio deepfake detection. Specifically, we use the Fisher information matrix to measure important neuron regions for real and fake audio detection, dividing them into four regions. First, we directly fine-tune the less important regions to quickly adapt to new tasks. Next, we apply gradient optimization in parallel for regions important only to real audio detection, and in orthogonal directions for regions important only to fake audio detection. For regions that are important to both, we use sample proportion-based adaptive gradient optimization. This region-adaptive optimization ensures an appropriate trade-off between memory stability and learning plasticity. Additionally, to address the increase of redundant neurons from old tasks, we further introduce the Ebbinghaus forgetting mechanism to release them, thereby promoting the capability of the model to learn more generalized discriminative features. Experimental results show our method achieves a 21.3% improvement in EER over the state-of-the-art continual learning approach RWM for audio deepfake detection. Moreover, the effectiveness of RegO extends beyond the audio deepfake detection domain, showing potential significance in other tasks, such as image recognition. The code is available at https://github.com/cyjie429/RegO
Related papers
- Audios Don't Lie: Multi-Frequency Channel Attention Mechanism for Audio Deepfake Detection [0.0]
This study proposes an audio deepfake detection method based on multi-frequency channel attention mechanism (MFCA) and 2D discrete cosine transform (DCT)
By processing the audio signal into a melspectrogram, using MobileNet V2 to extract deep features, this method can effectively capture the fine-grained frequency domain features in the audio signal.
Experimental results show that compared with traditional methods, the model proposed in this study shows significant advantages in accuracy, precision,recall, F1 score and other indicators.
arXiv Detail & Related papers (2024-12-12T17:15:49Z) - DiMoDif: Discourse Modality-information Differentiation for Audio-visual Deepfake Detection and Localization [13.840950434728533]
We present a novel audio-visual deepfake detection framework.
Based on the assumption that in real samples - in contrast to deepfakes - visual and audio signals coincide in terms of information.
We use features from deep networks that specialize in video and audio speech recognition to spot frame-level cross-modal incongruities.
arXiv Detail & Related papers (2024-11-15T13:47:33Z) - Contextual Cross-Modal Attention for Audio-Visual Deepfake Detection and Localization [3.9440964696313485]
In the digital age, the emergence of deepfakes and synthetic media presents a significant threat to societal and political integrity.
Deepfakes based on multi-modal manipulation, such as audio-visual, are more realistic and pose a greater threat.
We propose a novel multi-modal attention framework based on recurrent neural networks (RNNs) that leverages contextual information for audio-visual deepfake detection.
arXiv Detail & Related papers (2024-08-02T18:45:01Z) - Statistics-aware Audio-visual Deepfake Detector [11.671275975119089]
Methods in audio-visualfake detection mostly assess the synchronization between audio and visual features.
We propose a statistical feature loss to enhance the discrimination capability of the model.
Experiments on the DFDC and FakeAVCeleb datasets demonstrate the relevance of the proposed method.
arXiv Detail & Related papers (2024-07-16T12:15:41Z) - Proactive Detection of Voice Cloning with Localized Watermarking [50.13539630769929]
We present AudioSeal, the first audio watermarking technique designed specifically for localized detection of AI-generated speech.
AudioSeal employs a generator/detector architecture trained jointly with a localization loss to enable localized watermark detection up to the sample level.
AudioSeal achieves state-of-the-art performance in terms of robustness to real life audio manipulations and imperceptibility based on automatic and human evaluation metrics.
arXiv Detail & Related papers (2024-01-30T18:56:22Z) - What to Remember: Self-Adaptive Continual Learning for Audio Deepfake
Detection [53.063161380423715]
Existing detection models have shown remarkable success in discriminating known deepfake audio, but struggle when encountering new attack types.
We propose a continual learning approach called Radian Weight Modification (RWM) for audio deepfake detection.
arXiv Detail & Related papers (2023-12-15T09:52:17Z) - Do You Remember? Overcoming Catastrophic Forgetting for Fake Audio
Detection [54.20974251478516]
We propose a continual learning algorithm for fake audio detection to overcome catastrophic forgetting.
When fine-tuning a detection network, our approach adaptively computes the direction of weight modification according to the ratio of genuine utterances and fake utterances.
Our method can easily be generalized to related fields, like speech emotion recognition.
arXiv Detail & Related papers (2023-08-07T05:05:49Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
Existing multimodal detection methods capture audio-visual inconsistencies to expose Deepfake videos.
We propose a novel Deepfake detection method to mine the correlation between Non-critical Phonemes and Visemes, termed NPVForensics.
Our model can be easily adapted to the downstream Deepfake datasets with fine-tuning.
arXiv Detail & Related papers (2023-06-12T06:06:05Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.