CLIP-SR: Collaborative Linguistic and Image Processing for Super-Resolution
- URL: http://arxiv.org/abs/2412.11609v1
- Date: Mon, 16 Dec 2024 09:50:09 GMT
- Title: CLIP-SR: Collaborative Linguistic and Image Processing for Super-Resolution
- Authors: Bingwen Hu, Heng Liu, Zhedong Zheng, Ping Liu,
- Abstract summary: Convolutional Neural Networks (CNNs) have advanced Image Super-Resolution (SR)
Most CNN-based methods rely solely on pixel-based transformations, leading to artifacts and blurring.
We introduce a multi-modal semantic enhancement approach that combines textual semantics with visual features.
- Score: 21.843398350371867
- License:
- Abstract: Convolutional Neural Networks (CNNs) have advanced Image Super-Resolution (SR), but most CNN-based methods rely solely on pixel-based transformations, often leading to artifacts and blurring, particularly with severe downsampling (e.g., 8x or 16x). Recent text-guided SR methods attempt to leverage textual information for enhanced detail, but they frequently struggle with effective alignment, resulting in inconsistent semantic coherence. To address these limitations, we introduce a multi-modal semantic enhancement approach that combines textual semantics with visual features, effectively tackling semantic mismatches and detail loss in highly degraded LR images. Our proposed multi-modal collaborative framework enables the production of realistic and high-quality SR images at significant up-scaling factors. The framework integrates text and image inputs, employing a prompt predictor, Text-Image Fusion Block (TIFBlock), and Iterative Refinement Module alongside CLIP (Contrastive Language-Image Pretraining) features to guide a progressive enhancement process with fine-grained alignment. This alignment produces high-resolution outputs with crisp details and semantic coherence, even at large scaling factors. Through extensive comparative experiments and ablation studies, we validate the effectiveness of our approach. Additionally, by incorporating textual semantic guidance, our technique enables a degree of super-resolution editability while maintaining semantic coherence.
Related papers
- HoliSDiP: Image Super-Resolution via Holistic Semantics and Diffusion Prior [62.04939047885834]
We present HoliSDiP, a framework that leverages semantic segmentation to provide both precise textual and spatial guidance for Real-ISR.
Our method employs semantic labels as concise text prompts while introducing dense semantic guidance through segmentation masks and our proposed spatial-CLIP Map.
arXiv Detail & Related papers (2024-11-27T15:22:44Z) - CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
We introduce the Cognitive Super-Resolution (CoSeR) framework, empowering SR models with the capacity to comprehend low-resolution images.
We achieve this by marrying image appearance and language understanding to generate a cognitive embedding.
To further improve image fidelity, we propose a novel condition injection scheme called "All-in-Attention"
arXiv Detail & Related papers (2023-11-27T16:33:29Z) - Recognition-Guided Diffusion Model for Scene Text Image Super-Resolution [15.391125077873745]
Scene Text Image Super-Resolution (STISR) aims to enhance the resolution and legibility of text within low-resolution (LR) images.
Previous methods predominantly employ discriminative Convolutional Neural Networks (CNNs) augmented with diverse forms of text guidance.
We introduce RGDiffSR, a Recognition-Guided Diffusion model for scene text image Super-Resolution, which exhibits great generative diversity and fidelity even in challenging scenarios.
arXiv Detail & Related papers (2023-11-22T11:10:45Z) - Improving Scene Text Image Super-resolution via Dual Prior Modulation
Network [20.687100711699788]
Scene text image super-resolution (STISR) aims to simultaneously increase the resolution and legibility of the text images.
Existing approaches neglect the global structure of the text, which bounds the semantic determinism of the scene text.
Our work proposes a plug-and-play module dubbed Dual Prior Modulation Network (DPMN), which leverages dual image-level priors to bring performance gain over existing approaches.
arXiv Detail & Related papers (2023-02-21T02:59:37Z) - Rethinking Super-Resolution as Text-Guided Details Generation [21.695227836312835]
We propose a Text-Guided Super-Resolution (TGSR) framework, which can effectively utilize the information from the text and image modalities.
The proposed TGSR could generate HR image details that match the text descriptions through a coarse-to-fine process.
arXiv Detail & Related papers (2022-07-14T01:46:38Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis [80.54273334640285]
We propose a novel one-stage text-to-image backbone that directly synthesizes high-resolution images without entanglements between different generators.
We also propose a novel Target-Aware Discriminator composed of Matching-Aware Gradient Penalty and One-Way Output.
Compared with current state-of-the-art methods, our proposed DF-GAN is simpler but more efficient to synthesize realistic and text-matching images.
arXiv Detail & Related papers (2020-08-13T12:51:17Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.