CLIP-SR: Collaborative Linguistic and Image Processing for Super-Resolution
- URL: http://arxiv.org/abs/2412.11609v3
- Date: Mon, 14 Apr 2025 08:35:10 GMT
- Title: CLIP-SR: Collaborative Linguistic and Image Processing for Super-Resolution
- Authors: Bingwen Hu, Heng Liu, Zhedong Zheng, Ping Liu,
- Abstract summary: Convolutional Neural Networks (CNNs) have significantly advanced Image Super-Resolution (SR)<n>Most CNN-based methods rely solely on pixel-based transformations, leading to artifacts and blurring.<n>We propose a multi-modal semantic enhancement framework that integrates textual semantics with visual features.
- Score: 21.843398350371867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNNs) have significantly advanced Image Super-Resolution (SR), yet most CNN-based methods rely solely on pixel-based transformations, often leading to artifacts and blurring, particularly under severe downsampling rates (\eg, 8$\times$ or 16$\times$). The recently developed text-guided SR approaches leverage textual descriptions to enhance their detail restoration capabilities but frequently struggle with effectively performing alignment, resulting in semantic inconsistencies. To address these challenges, we propose a multi-modal semantic enhancement framework that integrates textual semantics with visual features, effectively mitigating semantic mismatches and detail losses in highly degraded low-resolution (LR) images. Our method enables realistic, high-quality SR to be performed at large upscaling factors, with a maximum scaling ratio of 16$\times$. The framework integrates both text and image inputs using the prompt predictor, the Text-Image Fusion Block (TIFBlock), and the Iterative Refinement Module, leveraging Contrastive Language-Image Pretraining (CLIP) features to guide a progressive enhancement process with fine-grained alignment. This synergy produces high-resolution outputs with sharp textures and strong semantic coherence, even at substantial scaling factors. Extensive comparative experiments and ablation studies validate the effectiveness of our approach. Furthermore, by leveraging textual semantics, our method offers a degree of super-resolution editability, allowing for controlled enhancements while preserving semantic consistency. The code is available at https://github.com/hengliusky/CLIP-SR.
Related papers
- XPSR: Cross-modal Priors for Diffusion-based Image Super-Resolution [14.935662351654601]
Diffusion-based methods, endowed with a formidable generative prior, have received increasing attention in Image Super-Resolution.
It is challenging for ISR models to perceive the semantic and degradation information, resulting in restoration images with incorrect content or unrealistic artifacts.
We propose a textitCross-modal Priors for Super-Resolution (XPSR) framework to acquire precise and comprehensive semantic conditions for the diffusion model.
arXiv Detail & Related papers (2024-03-08T04:52:22Z) - CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
We introduce the Cognitive Super-Resolution (CoSeR) framework, empowering SR models with the capacity to comprehend low-resolution images.
We achieve this by marrying image appearance and language understanding to generate a cognitive embedding.
To further improve image fidelity, we propose a novel condition injection scheme called "All-in-Attention"
arXiv Detail & Related papers (2023-11-27T16:33:29Z) - Image Super-Resolution with Text Prompt Diffusion [118.023531454099]
We introduce text prompts to image SR to provide degradation priors.
PromptSR leverages the latest multi-modal large language model (MLLM) to generate prompts from low-resolution images.
Experiments indicate that introducing text prompts into SR, yields impressive results on both synthetic and real-world images.
arXiv Detail & Related papers (2023-11-24T05:11:35Z) - Recognition-Guided Diffusion Model for Scene Text Image Super-Resolution [15.391125077873745]
Scene Text Image Super-Resolution (STISR) aims to enhance the resolution and legibility of text within low-resolution (LR) images.
Previous methods predominantly employ discriminative Convolutional Neural Networks (CNNs) augmented with diverse forms of text guidance.
We introduce RGDiffSR, a Recognition-Guided Diffusion model for scene text image Super-Resolution, which exhibits great generative diversity and fidelity even in challenging scenarios.
arXiv Detail & Related papers (2023-11-22T11:10:45Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - ESTISR: Adapting Efficient Scene Text Image Super-resolution for
Real-Scenes [25.04435367653037]
Scene text image super-resolution (STISR) has yielded remarkable improvements in accurately recognizing scene text.
We propose a novel Efficient Scene Text Image Super-resolution (ESTISR) Network for resource-limited deployment platform.
ESTISR consistently outperforms current methods in terms of actual running time and peak memory consumption.
arXiv Detail & Related papers (2023-06-04T19:14:44Z) - Improving Scene Text Image Super-resolution via Dual Prior Modulation
Network [20.687100711699788]
Scene text image super-resolution (STISR) aims to simultaneously increase the resolution and legibility of the text images.
Existing approaches neglect the global structure of the text, which bounds the semantic determinism of the scene text.
Our work proposes a plug-and-play module dubbed Dual Prior Modulation Network (DPMN), which leverages dual image-level priors to bring performance gain over existing approaches.
arXiv Detail & Related papers (2023-02-21T02:59:37Z) - Dynamic Low-Resolution Distillation for Cost-Efficient End-to-End Text
Spotting [49.33891486324731]
We propose a novel cost-efficient Dynamic Low-resolution Distillation (DLD) text spotting framework.
It aims to infer images in different small but recognizable resolutions and achieve a better balance between accuracy and efficiency.
The proposed method can be optimized end-to-end and adopted in any current text spotting framework to improve the practicability.
arXiv Detail & Related papers (2022-07-14T06:49:59Z) - Rethinking Super-Resolution as Text-Guided Details Generation [21.695227836312835]
We propose a Text-Guided Super-Resolution (TGSR) framework, which can effectively utilize the information from the text and image modalities.
The proposed TGSR could generate HR image details that match the text descriptions through a coarse-to-fine process.
arXiv Detail & Related papers (2022-07-14T01:46:38Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis [80.54273334640285]
We propose a novel one-stage text-to-image backbone that directly synthesizes high-resolution images without entanglements between different generators.
We also propose a novel Target-Aware Discriminator composed of Matching-Aware Gradient Penalty and One-Way Output.
Compared with current state-of-the-art methods, our proposed DF-GAN is simpler but more efficient to synthesize realistic and text-matching images.
arXiv Detail & Related papers (2020-08-13T12:51:17Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.