論文の概要: CNNtention: Can CNNs do better with Attention?
- arxiv url: http://arxiv.org/abs/2412.11657v1
- Date: Mon, 16 Dec 2024 11:00:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:59:52.857584
- Title: CNNtention: Can CNNs do better with Attention?
- Title(参考訳): CNNtention: CNNはAttentionで改善できるのか?
- Authors: Julian Glattki, Nikhil Kapila, Tejas Rathi,
- Abstract要約: 本研究の目的は,従来のCNNと注意増進CNNを画像分類タスクで比較することである。
彼らの性能、精度、計算効率を評価し、比較することで、プロジェクトは従来のCNNの局所的特徴抽出の利点とトレードオフを強調します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Convolutional Neural Networks (CNNs) have been the standard for image classification tasks for a long time, but more recently attention-based mechanisms have gained traction. This project aims to compare traditional CNNs with attention-augmented CNNs across an image classification task. By evaluating and comparing their performance, accuracy and computational efficiency, the project will highlight benefits and trade-off of the localized feature extraction of traditional CNNs and the global context capture in attention-augmented CNNs. By doing this, we can reveal further insights into their respective strengths and weaknesses, guide the selection of models based on specific application needs and ultimately, enhance understanding of these architectures in the deep learning community. This was our final project for CS7643 Deep Learning course at Georgia Tech.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、画像分類タスクの標準として長い間使われてきたが、最近では注目に基づくメカニズムが注目を集めている。
本研究の目的は,従来のCNNと注意増進CNNを画像分類タスクで比較することである。
従来のCNNの局所的特徴抽出と、注意を増したCNNにおけるグローバルなコンテキストキャプチャの利点とトレードオフを強調し、その性能、精度、計算効率を評価して比較する。
これを行うことで、それぞれの強みと弱みに関するさらなる洞察を明らかにし、特定のアプリケーションニーズに基づいたモデルの選択をガイドし、最終的にはディープラーニングコミュニティにおけるこれらのアーキテクチャの理解を深めることができます。
これはジョージア工科大学のCS7643ディープラーニングコースの最終プロジェクトです。
関連論文リスト
- OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
設計上の違いを再検討し、スパースCNNが達成できることの限界をテストする。
本稿では,このギャップを埋めるために,適応受容場(親和性)と適応関係という2つの重要な要素を提案する。
この調査により、軽量モジュールを統合するネットワークのファミリーであるOmni-Adaptive 3D CNN(OA-CNN)が開発された。
論文 参考訳(メタデータ) (2024-03-21T14:06:38Z) - A novel feature-scrambling approach reveals the capacity of
convolutional neural networks to learn spatial relations [0.0]
畳み込みニューラルネットワーク(CNN)は、物体認識を解く最も成功したコンピュータビジョンシステムの一つである。
しかし、CNNが実際にどのように決断を下すのか、内部表現の性質や認識戦略が人間とどのように異なるのかは、いまだに理解されていない。
論文 参考訳(メタデータ) (2022-12-12T16:40:29Z) - Demystifying CNNs for Images by Matched Filters [13.121514086503591]
畳み込みニューラルネットワーク(CNN)は、ビッグデータ時代のインテリジェントマシンのアプローチと使用方法に革命をもたらしています。
CNNは、そのテキストブラックボックスの性質と、その操作の理論的サポートと物理的意味の欠如により、精査されている。
本稿では,マッチングフィルタリングの観点を用いて,CNNの動作を復調する手法を提案する。
論文 参考訳(メタデータ) (2022-10-16T12:39:17Z) - Learning to ignore: rethinking attention in CNNs [87.01305532842878]
我々は,CNNの注意機構を再構築し,出席する学習ではなく無視することを学ぶことを提案する。
具体的には、シーン内で無関係な情報を明示的に学習し、生成した表現でそれを抑えることを提案する。
論文 参考訳(メタデータ) (2021-11-10T13:47:37Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - A CNN-based Feature Space for Semi-supervised Incremental Learning in
Assisted Living Applications [2.1485350418225244]
トレーニングデータセットから得られた特徴空間を用いて、問題のある画像を自動的にラベル付けする。
その結果、半教師付き漸進的な学習プロセスにより、新しいインスタンスの分類精度を40%向上させることができる。
論文 参考訳(メタデータ) (2020-11-11T12:31:48Z) - CNN Explainer: Learning Convolutional Neural Networks with Interactive
Visualization [23.369550871258543]
CNN Explainerは、非専門家が畳み込みニューラルネットワーク(CNN)を学習し、検証するために設計されたインタラクティブな可視化ツールである。
我々のツールは、CNNについて学びながら初心者が直面する重要な課題に対処し、インストラクターへのインタビューや過去の学生に対する調査から識別する。
CNN Explainerは、ユーザがCNNの内部動作をより理解しやすくし、興味深く、使いやすくする。
論文 参考訳(メタデータ) (2020-04-30T17:49:44Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。