Emptiness Instanton in Quantum Polytropic Gas
- URL: http://arxiv.org/abs/2412.11686v2
- Date: Thu, 26 Dec 2024 11:23:37 GMT
- Title: Emptiness Instanton in Quantum Polytropic Gas
- Authors: Alexander G. Abanov, Dimitri M. Gangardt,
- Abstract summary: The problem involves determining the probability of the spontaneous formation of an empty interval in the ground state of the gas.
By solving the hydrodynamic equations in imaginary time, we derive the analytic form of the emptiness instanton.
This solution is expressed as an integral representation analogous to those used for correlation functions in Conformal Field Theory.
- Score: 49.1574468325115
- License:
- Abstract: The emptiness formation problem is addressed for a one-dimensional quantum polytropic gas characterized by an arbitrary polytropic index $\gamma$, which defines the equation of state $P \sim \rho^\gamma$, where $P$ is the pressure and $\rho$ is the density. The problem involves determining the probability of the spontaneous formation of an empty interval in the ground state of the gas. In the limit of a macroscopically large interval, this probability is dominated by an instanton configuration. By solving the hydrodynamic equations in imaginary time, we derive the analytic form of the emptiness instanton. This solution is expressed as an integral representation analogous to those used for correlation functions in Conformal Field Theory. Prominent features of the spatiotemporal profile of the instanton are obtained directly from this representation.
Related papers
- Closed-form solutions for the Salpeter equation [41.94295877935867]
We study the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin.
The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent problem, namely the B"aumer equation.
This B"aumera corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy for small times and Gaussian diffusion for large times.
arXiv Detail & Related papers (2024-06-26T15:52:39Z) - An Area Law for Entanglement Entropy in Particle Scattering [0.0]
We compute the entanglement entropy in 2-to-2 scattering of particles in a general setting.
Since $sigma_textel$ is generally believed, and observed experimentally, to grow with the collision energy $sqrts$ in the high energy regime, the result suggests a "second law" of entanglement entropy for high energy collisions.
arXiv Detail & Related papers (2024-05-13T18:00:00Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Physical insights from imaginary-time density--density correlation
functions [0.0]
We argue that no analytic continuation is required as $F(mathbfq,tau)$ contains, by definition, the same physical information as $S(mathbfq,omega)$.
Specifically, we show how we can directly extract key information such as the temperature or quasi-particle excitation energies from the $tau$-domain.
arXiv Detail & Related papers (2022-09-06T07:03:43Z) - Self-Consistency of the Fokker-Planck Equation [117.17004717792344]
The Fokker-Planck equation governs the density evolution of the Ito process.
Ground-truth velocity field can be shown to be the solution of a fixed-point equation.
In this paper, we exploit this concept to design a potential function of the hypothesis velocity fields.
arXiv Detail & Related papers (2022-06-02T03:44:23Z) - Ranked diffusion, delta Bose gas and Burgers equation [0.0]
We study the diffusion of $N$ particles in one dimension interacting via a drift proportional to their rank.
A mapping to the Lieb Liniger quantum model allows to obtain stationary time correlations, return probabilities and the decay rate to the stationary state.
arXiv Detail & Related papers (2021-08-21T14:05:56Z) - Entanglement distribution in the Quantum Symmetric Simple Exclusion
Process [0.0]
We study the probability distribution of entanglement in the Quantum Symmetric Simple Exclusion Process.
By means of a Coulomb gas approach from Random Matrix Theory, we compute analytically the large-deviation function of the entropy in the thermodynamic limit.
arXiv Detail & Related papers (2021-02-09T10:25:04Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.