論文の概要: The Eclipsing Binaries via Artificial Intelligence. II. Need for Speed in PHOEBE Forward Models
- arxiv url: http://arxiv.org/abs/2412.11837v1
- Date: Mon, 16 Dec 2024 15:00:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:08.123736
- Title: The Eclipsing Binaries via Artificial Intelligence. II. Need for Speed in PHOEBE Forward Models
- Title(参考訳): 人工知能によるバイナリの削除 II. PHOEBEフォワードモデルにおける速度の必要性
- Authors: Marcin Wrona, Andrej Prša,
- Abstract要約: 現代の天文学では、収集されたデータの量は手動分析の能力を大きく上回っている。
AIは、フォワードモデルを生成するのに必要な時間から計算ボトルネックが発生するシミュレーションコードを最適化することができる。
我々は、100万以上の合成光曲線のデータセットに基づいてトレーニングされた、完全に接続されたフィードフォワード人工ニューラルネットワーク(ANN)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In modern astronomy, the quantity of data collected has vastly exceeded the capacity for manual analysis, necessitating the use of advanced artificial intelligence (AI) techniques to assist scientists with the most labor-intensive tasks. AI can optimize simulation codes where computational bottlenecks arise from the time required to generate forward models. One such example is PHOEBE, a modeling code for eclipsing binaries (EBs), where simulating individual systems is feasible, but analyzing observables for extensive parameter combinations is highly time-consuming. To address this, we present a fully connected feedforward artificial neural network (ANN) trained on a dataset of over one million synthetic light curves generated with PHOEBE. Optimization of the ANN architecture yielded a model with six hidden layers, each containing 512 nodes, provides an optimized balance between accuracy and computational complexity. Extensive testing enabled us to establish ANN's applicability limits and to quantify the systematic and statistical errors associated with using such networks for EB analysis. Our findings demonstrate the critical role of dilution effects in parameter estimation for EBs, and we outline methods to incorporate these effects in AI-based models. This proposed ANN framework enables a speedup of over four orders of magnitude compared to traditional methods, with systematic errors not exceeding 1\%, and often as low as 0.01\%, across the entire parameter space.
- Abstract(参考訳): 現代の天文学では、収集されたデータの量は手動分析の能力を大きく超え、最も労働集約的なタスクで科学者を支援するために高度な人工知能(AI)技術を使用する必要がある。
AIは、フォワードモデルを生成するのに必要な時間から計算ボトルネックが発生するシミュレーションコードを最適化することができる。
例えば PHOEBE は、個々のシステムのシミュレーションが可能であるが、広範囲なパラメータの組み合わせで観測可能なものを分析するのには非常に時間がかかる。
これを解決するために、PHOEBEで生成された100万以上の合成光曲線のデータセットに基づいてトレーニングされた、完全に接続されたフィードフォワード人工ニューラルネットワーク(ANN)を提案する。
ANNアーキテクチャの最適化により、それぞれ512ノードを含む6つの隠れレイヤを持つモデルが得られ、精度と計算複雑性のバランスが最適化された。
大規模なテストにより、ANNの適用可能性限界を確立し、そのようなネットワークを用いてEB分析を行う際の系統的および統計的誤差を定量化することができる。
本稿では, パラメータ推定における希釈効果の重要な役割を実証し, これらの効果をAIモデルに組み込む方法について概説する。
提案したANNフレームワークは,従来の手法に比べて4桁以上の高速化が可能で,システムエラーは1\%を超えず,パラメータ空間全体にわたって0.01\%以下であることが多い。
関連論文リスト
- Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DT)は、現実世界のシステムの状態と時間力学をシミュレートする。
DTは、しばしばデータスカース設定で目に見えない条件に一般化するのに苦労します。
本稿では,HDTwinsを自律的に提案し,評価し,最適化するための進化的アルゴリズム(textbfHDTwinGen$)を提案する。
論文 参考訳(メタデータ) (2024-10-31T07:28:22Z) - Automatic Generation of Fast and Accurate Performance Models for Deep Neural Network Accelerators [33.18173790144853]
本稿では,Deep Neural Networks (DNN) のレイテンシを正確に推定する高速性能モデルのための自動生成手法を提案する。
我々は、Gemmini、UltraTrail、Plastinine由来、パラメータ化可能なシストリックアレイなどの代表的DNNアクセラレータをモデル化した。
ループカーネルを154回繰り返して評価し,419億命令のパフォーマンスを推定し,大幅な高速化を実現した。
論文 参考訳(メタデータ) (2024-09-13T07:27:55Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Towards Hyperparameter-Agnostic DNN Training via Dynamical System
Insights [4.513581513983453]
本稿では,ディープニューラルネットワーク(DNN),ECCO-DNNに特化した一階最適化手法を提案する。
本手法は, 最適変数軌道を動的システムとしてモデル化し, 軌道形状に基づいてステップサイズを適応的に選択する離散化アルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-10-21T03:45:13Z) - Fairer and More Accurate Tabular Models Through NAS [14.147928131445852]
本稿では,多目的ニューラルアーキテクチャサーチ (NAS) とハイパーパラメータ最適化 (HPO) を,表データの非常に困難な領域への最初の応用として提案する。
我々はNASで精度のみに最適化されたモデルが、本質的に公正な懸念に対処できないことをしばしば示している。
公平性、正確性、あるいは両方において、最先端のバイアス緩和手法を一貫して支配するアーキテクチャを作成します。
論文 参考訳(メタデータ) (2023-10-18T17:56:24Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with
Autotuned Data-Parallel Training for Tabular Data [11.552769149674544]
大規模データセットに対する高性能な予測モデルの開発は難しい課題である。
最近の自動機械学習(AutoML)は、予測モデル開発を自動化するための有望なアプローチとして現れている。
我々は,老化進化(AgE)とニューラルアーキテクチャ空間を探索する並列NAS法を組み合わせたAgEBO-Tabularを開発した。
論文 参考訳(メタデータ) (2020-10-30T16:28:48Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。