論文の概要: SPGL: Enhancing Session-based Recommendation with Single Positive Graph Learning
- arxiv url: http://arxiv.org/abs/2412.11846v1
- Date: Mon, 16 Dec 2024 15:08:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:58:56.432718
- Title: SPGL: Enhancing Session-based Recommendation with Single Positive Graph Learning
- Title(参考訳): SPGL: 単一陽性グラフ学習によるセッションベース勧告の強化
- Authors: Tiantian Liang, Zhe Yang,
- Abstract要約: セッションベースのレコメンデーションは、ユーザが関心を持つ次の項目を、インタラクションシーケンスに基づいて予測する。
従来の手法は、正と負のサンプルを生成するために複雑なモデルを構築することで特徴学習を強化する。
本稿では,Single Positive Optimization loss と Graph Learning を用いたセッションベース推薦モデルを提案する。
- 参考スコア(独自算出の注目度): 3.105656247358225
- License:
- Abstract: Session-based recommendation seeks to forecast the next item a user will be interested in, based on their interaction sequences. Due to limited interaction data, session-based recommendation faces the challenge of limited data availability. Traditional methods enhance feature learning by constructing complex models to generate positive and negative samples. This paper proposes a session-based recommendation model using Single Positive optimization loss and Graph Learning (SPGL) to deal with the problem of data sparsity, high model complexity and weak transferability. SPGL utilizes graph convolutional networks to generate global item representations and batch session representations, effectively capturing intrinsic relationships between items. The use of single positive optimization loss improves uniformity of item representations, thereby enhancing recommendation accuracy. In the intent extractor, SPGL considers the hop count of the adjacency matrix when constructing the directed global graph to fully integrate spatial information. It also takes into account the reverse positional information of items when constructing session representations to incorporate temporal information. Comparative experiments across three benchmark datasets, Tmall, RetailRocket and Diginetica, demonstrate the model's effectiveness. The source code can be accessed on https://github.com/liang-tian-tian/SPGL .
- Abstract(参考訳): セッションベースのレコメンデーションは、ユーザが関心を持つ次の項目を、インタラクションシーケンスに基づいて予測する。
インタラクションデータの制限のため、セッションベースのレコメンデーションは、データ可用性の制限という課題に直面している。
従来の手法は、正と負のサンプルを生成するために複雑なモデルを構築することで特徴学習を強化する。
本稿では,Single Positive Optimization loss and Graph Learning (SPGL) を用いたセッションベースレコメンデーションモデルを提案する。
SPGLは、グラフ畳み込みネットワークを使用して、グローバルなアイテム表現とバッチセッション表現を生成し、アイテム間の固有の関係を効果的にキャプチャする。
単一正の最適化損失を用いることで、アイテム表現の均一性が向上し、レコメンデーション精度が向上する。
目的抽出器において、SPGLは、空間情報を完全に統合するために、有向大域グラフを構築する際に、隣接行列のホップ数を考える。
また、時間情報を組み込むセッション表現を構築する際に、アイテムの逆の位置情報も考慮する。
Tmall、RetailRocket、Digineticaの3つのベンチマークデータセットの比較実験は、モデルの有効性を実証している。
ソースコードはhttps://github.com/liang-tian-tian/SPGLでアクセスできる。
関連論文リスト
- APGL4SR: A Generic Framework with Adaptive and Personalized Global
Collaborative Information in Sequential Recommendation [86.29366168836141]
逐次推薦のための適応およびパーソナライズされたグラフ学習(APGL4SR)というグラフ駆動型フレームワークを提案する。
APGL4SRは、適応的でパーソナライズされたグローバルな協調情報をシーケンシャルレコメンデーションシステムに組み込む。
一般的なフレームワークとして、APGL4SRは大きなマージンを持つ他のベースラインよりも優れている。
論文 参考訳(メタデータ) (2023-11-06T01:33:24Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
論文 参考訳(メタデータ) (2023-10-24T15:51:13Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
本研究では,グローバルな視点から複雑な関連性を持つ項目表現を強化するために,グラフコントラスト学習を提案する。
本稿では,CapsNetモジュールを拡張したターゲットアテンション機構により,ユーザの動的嗜好を導出する。
提案したGUESRは,大幅な改善を達成できただけでなく,汎用的な拡張戦略ともみなすことができた。
論文 参考訳(メタデータ) (2023-03-01T05:46:36Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
自己監督型ハイパーグラフ変換器(SHT)
自己監督型ハイパーグラフ変換器(SHT)
ユーザ-テム相互作用グラフ上のデータ拡張のために,クロスビュー生成型自己教師型学習コンポーネントを提案する。
論文 参考訳(メタデータ) (2022-07-28T18:40:30Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - HCGR: Hyperbolic Contrastive Graph Representation Learning for
Session-based Recommendation [5.942131706372327]
セッションベースレコメンデーション(SBR)は、ユーザの行動の進化から短期的および連続的なパターンをキャプチャすることで、ユーザの好みを学習する。
アイテムのコヒーレンスと階層的表現を適切に捉えるために,双曲型コントラストグラフレコメンダ(HCGR)を提案する。
論文 参考訳(メタデータ) (2021-07-06T01:46:16Z) - Improved Representation Learning for Session-based Recommendation [0.0]
セッションベースのレコメンデーションシステムは、短期匿名セッションを用いてユーザの行動や嗜好をモデル化することで、ユーザに対して関連項目を提案する。
既存の方法はグラフニューラルネットワーク(GNN)を利用して、近隣のノードから情報を伝達し集約する。
我々は、よりリッチな表現学習を可能にする目標注意型GNNと組み合わせてトランスフォーマーを提案する。
論文 参考訳(メタデータ) (2021-07-04T00:57:28Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。