論文の概要: PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection
- arxiv url: http://arxiv.org/abs/2412.11923v1
- Date: Mon, 16 Dec 2024 16:09:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:33.531094
- Title: PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection
- Title(参考訳): PICLe:低リソース名前付きエンティティ検出における文脈学習のための擬似アノテーション
- Authors: Sepideh Mamooler, Syrielle Montariol, Alexander Mathis, Antoine Bosselut,
- Abstract要約: In-context Learning (ICL)により、大規模言語モデルでは、デモをほとんど使わずにタスクを実行することができる。
PICLeは、ノイズの多い擬似アノテーション付き実演によるインコンテキスト学習のためのフレームワークである。
バイオメディカルな5つのNEDデータセット上でPICLeを評価し,PICLeが低リソース環境でICLより優れていることを示す。
- 参考スコア(独自算出の注目度): 56.916656013563355
- License:
- Abstract: In-context learning (ICL) enables Large Language Models (LLMs) to perform tasks using few demonstrations, facilitating task adaptation when labeled examples are hard to obtain. However, ICL is sensitive to the choice of demonstrations, and it remains unclear which demonstration attributes enable in-context generalization. In this work, we conduct a perturbation study of in-context demonstrations for low-resource Named Entity Detection (NED). Our surprising finding is that in-context demonstrations with partially correct annotated entity mentions can be as effective for task transfer as fully correct demonstrations. Based off our findings, we propose Pseudo-annotated In-Context Learning (PICLe), a framework for in-context learning with noisy, pseudo-annotated demonstrations. PICLe leverages LLMs to annotate many demonstrations in a zero-shot first pass. We then cluster these synthetic demonstrations, sample specific sets of in-context demonstrations from each cluster, and predict entity mentions using each set independently. Finally, we use self-verification to select the final set of entity mentions. We evaluate PICLe on five biomedical NED datasets and show that, with zero human annotation, PICLe outperforms ICL in low-resource settings where limited gold examples can be used as in-context demonstrations.
- Abstract(参考訳): In-context Learning (ICL) により、Large Language Models (LLM) は、少数の実演でタスクを実行することができ、ラベル付き例が入手しにくい場合にタスク適応を容易にする。
しかし、ICLはデモの選択に敏感であり、どのデモ属性がコンテキスト内一般化を可能にするのかは定かではない。
本研究では,低リソースな名前付きエンティティ検出(NED)のためのコンテキスト内実演の摂動研究を行う。
私たちの驚くべき発見は、部分的に正しい注釈付きエンティティの言及を持つコンテキスト内デモは、完全に正しいデモと同じくらい、タスク転送に効果があるということです。
本研究はPseudo-annotated In-Context Learning (PICLe)を提案する。
PICLe は LLM を利用してゼロショットファーストパスで多くのデモを注釈付けする。
次に、これらの合成デモをクラスタ化し、各クラスタからコンテキスト内デモの特定のセットをサンプリングし、各セットを使用してエンティティの参照を予測する。
最後に、自己検証を使用して、最後のエンティティ参照セットを選択します。
我々は,5つの生物医学的NEDデータセット上でPICLeを評価し,PICLeが低リソース環境下でICCより優れていることを示す。
関連論文リスト
- DemoShapley: Valuation of Demonstrations for In-Context Learning [20.26604061802236]
インコンテキスト学習(ICL)を利用した大規模言語モデル(LLM)は、タスク固有の微調整を必要とせずに、様々なタスク間で数ショットの学習を行う新しいベンチマークを設定した。
我々は、Data Shapleyの評価定理にインスパイアされたDemoShapleyを紹介する。
この結果から,DemoShapleyは精度と公平性の観点からモデル性能を向上するだけでなく,コンテキスト内デモとは異なる領域からのクエリを一般化することがわかった。
論文 参考訳(メタデータ) (2024-10-10T01:35:03Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - In-context Learning with Retrieved Demonstrations for Language Models: A Survey [23.24271704145876]
インコンテクスト学習者(ICL)は入力コンテキストでのデモを少しだけ行うだけで、新しいタスクに適応できる。
最近の開発では、固定された一連のデモを使う代わりに、各入力クエリに合わせたデモを検索する。
本稿では,検索モデル,検索訓練手順,推論アルゴリズムの異なる設計選択について論じ,比較する。
論文 参考訳(メタデータ) (2024-01-21T23:34:42Z) - Comparable Demonstrations are Important in In-Context Learning: A Novel
Perspective on Demonstration Selection [22.29452683679149]
In-Context Learning(ICL)は、大規模言語モデル(LLM)をダウンストリームタスクに適用するための重要なパラダイムである。
本研究は、ICLのメカニズムを新しい視点から検討し、ICLの実証選択戦略についてより深い知見を提供する。
論文 参考訳(メタデータ) (2023-12-12T18:05:46Z) - Scaling In-Context Demonstrations with Structured Attention [75.41845145597875]
我々は、文脈内学習のためのより優れたアーキテクチャ設計を提案する。
In-Context Learningのための構造化アテンションは、構造化アテンションメカニズムによって完全なアテンションを置き換える。
SAICLは、最大3.4倍の推論速度で、フルアテンションよりも同等または優れた性能を実現していることを示す。
論文 参考訳(メタデータ) (2023-07-05T23:26:01Z) - In-Context Demonstration Selection with Cross Entropy Difference [95.21947716378641]
大規模言語モデル(LLM)は、ゼロショットタスクのパフォーマンスを改善するためにコンテキスト内デモを使用することができる。
テキスト内デモを選択するためのクロスエントロピー差分法(CED)を提案する。
論文 参考訳(メタデータ) (2023-05-24T05:04:00Z) - Dr.ICL: Demonstration-Retrieved In-context Learning [29.142262267850704]
インコンテキスト学習(ICL)は、LLMを使用するための強力なパラダイムとして、数発のデモでタスクを実行するために大きな言語モデルを教える。
最近の研究では、利用可能なデモのプールからの入力に対して意味論的に類似したデモを取得することで、より良いパフォーマンスが得られることが示唆されている。
この研究は、BM25のような単純な単語オーバーラップ類似度対策でさえ、ランダムに選択された実演よりも優れていることを示すことで、検索ベースのICLアプローチの適用性を拡大する。
論文 参考訳(メタデータ) (2023-05-23T14:55:25Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z) - Self-Generated In-Context Learning: Leveraging Auto-regressive Language
Models as a Demonstration Generator [22.532627423361177]
自己生成型インコンテキスト学習(SG-ICL)は、PLM自体からインコンテキスト学習のためのデモを生成する。
我々は、SG-ICLがゼロショット学習を著しく上回り、一般的に約0.6金のトレーニングサンプルの価値があることを示した。
論文 参考訳(メタデータ) (2022-06-16T10:52:13Z) - Rethinking the Role of Demonstrations: What Makes In-Context Learning
Work? [112.72413411257662]
大規模言語モデル(LM)は、いくつかのインプットラベルペア(デモ)を条件付けして、新しいインプットの予測を行うことで、インコンテキストで学習することができる。
実演のラベルをランダムに置き換えることは、パフォーマンスをほとんど損なうものではない。
デモの他の側面が、エンドタスクのパフォーマンスの主要な要因であることに気付きました。
論文 参考訳(メタデータ) (2022-02-25T17:25:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。