論文の概要: Are the Latent Representations of Foundation Models for Pathology Invariant to Rotation?
- arxiv url: http://arxiv.org/abs/2412.11938v1
- Date: Mon, 16 Dec 2024 16:23:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:55:12.188250
- Title: Are the Latent Representations of Foundation Models for Pathology Invariant to Rotation?
- Title(参考訳): 回転に不変な病態に対する基礎モデルの潜在表現は可能か?
- Authors: Matouš Elphick, Samra Turajlic, Guang Yang,
- Abstract要約: デジタル病理学のための自己教師型基礎モデルは、H&E全体からの小さなパッチを下流タスクに使用する潜在表現にエンコードする。
本研究では,12の基底モデルにおける潜在表現の回転不変性について,互いに$k$-アネレスト近傍とコサイン距離を用いて非回転パッチと回転パッチのアライメントを定量化することによって検討した。
- 参考スコア(独自算出の注目度): 3.407509559779547
- License:
- Abstract: Self-supervised foundation models for digital pathology encode small patches from H\&E whole slide images into latent representations used for downstream tasks. However, the invariance of these representations to patch rotation remains unexplored. This study investigates the rotational invariance of latent representations across twelve foundation models by quantifying the alignment between non-rotated and rotated patches using mutual $k$-nearest neighbours and cosine distance. Models that incorporated rotation augmentation during self-supervised training exhibited significantly greater invariance to rotations. We hypothesise that the absence of rotational inductive bias in the transformer architecture necessitates rotation augmentation during training to achieve learned invariance. Code: https://github.com/MatousE/rot-invariance-analysis.
- Abstract(参考訳): デジタル病理学のための自己教師型基礎モデルでは、スライド画像全体から下流タスクに使用される潜在表現に小さなパッチをエンコードする。
しかし、パッチの回転に対するこれらの表現の不変性は未解明のままである。
本研究では,12の基底モデルにおける潜在表現の回転不変性について,互いに$k$-アネレスト近傍とコサイン距離を用いて非回転パッチと回転パッチのアライメントを定量化することによって検討した。
自制訓練中の回転増強を取り入れたモデルでは、回転に対する大きな不変性を示した。
変圧器アーキテクチャにおける回転誘導バイアスの欠如は、学習した不変性を達成するために、トレーニング中に回転増強を必要とすると仮定する。
コード:https://github.com/MatousE/rot-invariance-analysis。
関連論文リスト
- FRED: Towards a Full Rotation-Equivariance in Aerial Image Object
Detection [28.47314201641291]
FRED(Fully Rotation-Equivariant Oriented Object Detector)を導入する。
提案手法は,DOTA-v1.0では同等の性能を示し,DOTA-v1.5では1.5mAP,モデルパラメータでは16%と大幅に低下する。
論文 参考訳(メタデータ) (2023-12-22T09:31:43Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
ポイントクラウド登録(PCR)は、2つのポイントクラウド間の相対的な厳密な変換を推定する。
本稿では, PCR を拡散確率過程として定式化し, ノイズ変換を基礎的真理にマッピングする。
実験ではDiffusionPCRの有効性を示し,3Dおよび3DLoMatchに対する最先端の登録リコール率(95.3%/81.6%)を得た。
論文 参考訳(メタデータ) (2023-12-05T18:59:41Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - PaRot: Patch-Wise Rotation-Invariant Network via Feature Disentanglement
and Pose Restoration [16.75367717130046]
最先端モデルは回転に対して堅牢ではなく、実際の応用に先立って未知のままである。
Patch-wise Rotation-invariant Network (PaRot)を導入する。
本モジュールは高品質な回転ロバスト特性を抽出し,提案した軽量モデルにより競争結果が得られた。
論文 参考訳(メタデータ) (2023-02-06T02:13:51Z) - The Lie Derivative for Measuring Learned Equivariance [84.29366874540217]
我々は、CNN、トランスフォーマー、ミキサーアーキテクチャにまたがる数百の事前訓練されたモデルの同値性について検討する。
その結果,不等式違反の多くは,不等式などのユビキタスネットワーク層における空間エイリアスに関連付けられることがわかった。
例えば、トランスはトレーニング後の畳み込みニューラルネットワークよりも同種である。
論文 参考訳(メタデータ) (2022-10-06T15:20:55Z) - Learning Continuous Rotation Canonicalization with Radial Beam Sampling [2.8935588665357077]
放射光を用いた画像標準化モデルであるショートBICを提案する。
我々のモデルは、最大連続角度回帰を可能にし、任意の中心回転入力画像の正準化を可能にする。
事前処理モデルとして、モデルに依存しない回転に敏感な下流予測を備えた回転不変ビジョンパイプラインを実現する。
論文 参考訳(メタデータ) (2022-06-21T19:12:06Z) - Modelling nonlinear dependencies in the latent space of inverse
scattering [1.5990720051907859]
アングルとマラートによって提案された逆散乱では、ディープニューラルネットワークが画像に適用された散乱変換を反転するように訓練される。
このようなネットワークをトレーニングした後、散乱係数の主成分分布から標本化できることから、生成モデルとして利用することができる。
本稿では,2つのモデル,すなわち変分オートエンコーダと生成逆数ネットワークについて検討する。
論文 参考訳(メタデータ) (2022-03-19T12:07:43Z) - Designing Rotationally Invariant Neural Networks from PDEs and
Variational Methods [8.660429288575367]
拡散モデルと変動モデルが回転不変性をどのように達成し、これらのアイデアをニューラルネットワークに転送するかを検討する。
本稿では,複数の指向フィルタからの情報を組み合わせることで,ネットワークチャネルを結合するアクティベーション機能を提案する。
本研究は,拡散モデルと変分モデルを数学的に精細なネットワークアーキテクチャに変換し,モデルベースCNN設計のための新しい概念を提供するのに役立つ。
論文 参考訳(メタデータ) (2021-08-31T17:34:40Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
GANによる制御可能な世代は依然として困難な研究課題である。
本稿では,自己学習を通じてジェネレータを制御する潜伏符号の分布を学習するための教師なしフレームワークを提案する。
我々のフレームワークは、変分オートエンコーダのような他の変種と比較して、より良い絡み合いを示す。
論文 参考訳(メタデータ) (2020-07-17T21:50:35Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。