論文の概要: Modelling nonlinear dependencies in the latent space of inverse
scattering
- arxiv url: http://arxiv.org/abs/2203.10307v1
- Date: Sat, 19 Mar 2022 12:07:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-26 19:59:19.101861
- Title: Modelling nonlinear dependencies in the latent space of inverse
scattering
- Title(参考訳): 逆散乱の潜在空間における非線形依存のモデル化
- Authors: Juliusz Ziomek and Katayoun Farrahi
- Abstract要約: アングルとマラートによって提案された逆散乱では、ディープニューラルネットワークが画像に適用された散乱変換を反転するように訓練される。
このようなネットワークをトレーニングした後、散乱係数の主成分分布から標本化できることから、生成モデルとして利用することができる。
本稿では,2つのモデル,すなわち変分オートエンコーダと生成逆数ネットワークについて検討する。
- 参考スコア(独自算出の注目度): 1.5990720051907859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of inverse scattering proposed by Angles and Mallat in 2018,
concerns training a deep neural network to invert the scattering transform
applied to an image. After such a network is trained, it can be used as a
generative model given that we can sample from the distribution of principal
components of scattering coefficients. For this purpose, Angles and Mallat
simply use samples from independent Gaussians. However, as shown in this paper,
the distribution of interest can actually be very far from normal and
non-negligible dependencies might exist between different coefficients. This
motivates using models for this distribution that allow for non-linear
dependencies between variables. Within this paper, two such models are
explored, namely a Variational AutoEncoder and a Generative Adversarial
Network. We demonstrate the results obtained can be extremely realistic on some
datasets and look better than those produced by Angles and Mallat. The
conducted meta-analysis also shows a clear practical advantage of such
constructed generative models in terms of the efficiency of their training
process compared to existing generative models for images.
- Abstract(参考訳): 2018年にアングルとマラットによって提案された逆散乱の問題は、画像に適用された散乱変換を反転させるためにディープニューラルネットワークを訓練することに関するものである。
このようなネットワークが訓練された後、散乱係数の主成分の分布からサンプルを得ることができるので、生成モデルとして使うことができる。
この目的のために、アングルとマラートは独立したガウス人からのサンプルを使用する。
しかし、本論文で示したように、興味の分布は実際には通常のものから遠く離れており、異なる係数の間には無視できない依存性が存在する可能性がある。
これは、変数間の非線形依存性を可能にするこの分布のモデルを使うことを動機付ける。
本稿では,2つのモデル,すなわち変分オートエンコーダと生成的逆ネットワークについて検討する。
得られた結果は、いくつかのデータセットで極めて現実的で、AnglesやMallatが生成したものよりもよく見えることを実証する。
これらのメタ分析は, 既存の画像生成モデルと比較して, トレーニングプロセスの効率性の観点から, 構築した生成モデルの実用的メリットを示す。
関連論文リスト
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
本稿では,潜在変数のスパース成分への変換を分解し,シーケンスデータから表現を学習することを提案する。
入力データは、まず潜伏活性化の分布として符号化され、その後確率フローモデルを用いて変換される。
論文 参考訳(メタデータ) (2024-10-07T23:53:25Z) - Diffusion Models Learn Low-Dimensional Distributions via Subspace Clustering [15.326641037243006]
拡散モデルは画像分布を効果的に学習し、新しいサンプルを生成する。
我々は、この現象に関する理論的な洞察を、重要な経験的観測を利用して提供する。
基礎となる分布を学習するのに必要となるサンプルの最小数は、本質的な次元と線形にスケールすることを示す。
論文 参考訳(メタデータ) (2024-09-04T04:14:02Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Can Push-forward Generative Models Fit Multimodal Distributions? [3.8615905456206256]
生成ネットワークのリプシッツ定数はマルチモーダル分布に適合するために大きくなければならないことを示す。
本研究では,1次元および画像のデータセットを用いて,各ステップで入力されたスタックネットワークからなる生成モデルがそのような制約を負わないことを実証的に検証した。
論文 参考訳(メタデータ) (2022-06-29T09:03:30Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z) - Variational Filtering with Copula Models for SLAM [5.242618356321224]
より広い分布のクラスと同時局所化とマッピング(SLAM)を同時に行うことができるかを示す。
分布モデルとコプラを逐次モンテカルロ推定器に統合し、勾配に基づく最適化によって未知のモデルパラメータがいかに学習できるかを示す。
論文 参考訳(メタデータ) (2020-08-02T15:38:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。