User-Centered Course Reengineering: An Analytical Approach to Enhancing Reading Comprehension in Educational Content
- URL: http://arxiv.org/abs/2412.11944v1
- Date: Mon, 16 Dec 2024 16:26:20 GMT
- Title: User-Centered Course Reengineering: An Analytical Approach to Enhancing Reading Comprehension in Educational Content
- Authors: Madjid Sadallah,
- Abstract summary: This study presents an analytical framework to help course designers enhance educational content to better support learning outcomes.
Our approach adapts document content and structure based on insights from analyzing digital reading traces-interactions between readers and content.
Our framework enables authors to receive tailored content revision recommendations through an interactive dashboard.
- Score: 0.0
- License:
- Abstract: Delivering high-quality content is crucial for effective reading comprehension and successful learning. Ensuring educational materials are interpreted as intended by their authors is a persistent challenge, especially with the added complexity of multimedia and interactivity in the digital age. Authors must continuously revise their materials to meet learners' evolving needs. Detecting comprehension barriers and identifying actionable improvements within documents is complex, particularly in education where reading is fundamental. This study presents an analytical framework to help course designers enhance educational content to better support learning outcomes. Grounded in a robust theoretical foundation integrating learning analytics, reading comprehension, and content revision, our approach introduces usage-based document reengineering. This methodology adapts document content and structure based on insights from analyzing digital reading traces-interactions between readers and content. We define reading sessions to capture these interactions and develop indicators to detect comprehension challenges. Our framework enables authors to receive tailored content revision recommendations through an interactive dashboard, presenting actionable insights from reading activity. The proposed approach was implemented and evaluated using data from a European e-learning platform. Evaluations validate the framework's effectiveness, demonstrating its capacity to empower authors with data-driven insights for targeted revisions. The findings highlight the framework's ability to enhance educational content quality, making it more responsive to learners' needs. This research significantly contributes to learning analytics and content optimization, offering practical tools to improve educational outcomes and inform future developments in e-learning.
Related papers
- Ontology-Enhanced Educational Annotation Activities [1.6163129903911515]
Information and communications technology and technology-enhanced learning have unquestionably transformed traditional teaching-learning processes.
The main hypothesis proposed by this paper is that the use of a guiding annotation in the annotation activities is a keystone aspect to alleviate these shortcomings.
arXiv Detail & Related papers (2025-01-22T15:15:59Z) - IntelliChain: An Integrated Framework for Enhanced Socratic Method Dialogue with LLMs and Knowledge Graphs [1.810537720642316]
This study explores how to optimize the design and collaboration of a multi-agent system tailored for Socratic teaching.
By incorporating knowledge graphs, this research has bolstered the capability of LLMs to handle specific educational content.
arXiv Detail & Related papers (2025-01-07T03:32:29Z) - FecTek: Enhancing Term Weight in Lexicon-Based Retrieval with Feature Context and Term-level Knowledge [54.61068946420894]
We introduce an innovative method by introducing FEature Context and TErm-level Knowledge modules.
To effectively enrich the feature context representations of term weight, the Feature Context Module (FCM) is introduced.
We also develop a term-level knowledge guidance module (TKGM) for effectively utilizing term-level knowledge to intelligently guide the modeling process of term weight.
arXiv Detail & Related papers (2024-04-18T12:58:36Z) - Review Ecosystems to access Educational XR Experiences: a Scoping Review [0.4177651846674218]
This paper identifies best practices for developing a new review ecosystem.
It focuses on the form and format of these reviews, as well as the mechanisms for sharing information about experiences.
The strategies and opportunities for developing an educational XR (eduXR) review ecosystem include methods for measuring properties such as quality metrics.
arXiv Detail & Related papers (2024-03-25T22:44:28Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
We examine how artificial intelligence (AI) and machine learning (ML) methods can analyze educational content, teacher discourse, and student responses to foster instructional improvement.
We identify key areas where AI/ML integration offers significant advantages, including teacher coaching, student support, and content development.
This paper emphasizes the importance of aligning AI/ML technologies with pedagogical goals to realize their full potential in educational settings.
arXiv Detail & Related papers (2024-03-06T18:29:18Z) - Introducing Practicable Learning Analytics [0.0]
This book introduces the concept of practicable learning analytics to illuminate what learning analytics may look like from the perspective of practice.
We use the concept of Information Systems Artifact (ISA) which comprises three interrelated subsystems: the informational, the social and the technological artefacts.
The ten chapters in this book are presented and reflected upon from the ISA perspective, clarifying that detailed attention to the social artefact is critical to the design of practicable learning analytics.
arXiv Detail & Related papers (2023-01-26T21:20:08Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Readability Research: An Interdisciplinary Approach [62.03595526230364]
We aim to provide a firm foundation for readability research, a comprehensive framework for readability research.
Readability refers to aspects of visual information design which impact information flow from the page to the reader.
These aspects can be modified on-demand, instantly improving the ease with which a reader can process and derive meaning from text.
arXiv Detail & Related papers (2021-07-20T16:52:17Z) - KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting [52.623349754076024]
We provide an overview of the recommendation approaches integrated in KnowledgeCheckR.
Examples thereof are utility-based recommendation that helps to identify learning contents to be repeated in the future, collaborative filtering approaches that help to implement session-based recommendation, and content-based recommendation that supports intelligent question answering.
arXiv Detail & Related papers (2021-02-15T20:06:28Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
We aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning.
By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning.
This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning.
arXiv Detail & Related papers (2020-02-03T06:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.