IntelliChain: An Integrated Framework for Enhanced Socratic Method Dialogue with LLMs and Knowledge Graphs
- URL: http://arxiv.org/abs/2502.00010v1
- Date: Tue, 07 Jan 2025 03:32:29 GMT
- Title: IntelliChain: An Integrated Framework for Enhanced Socratic Method Dialogue with LLMs and Knowledge Graphs
- Authors: Changyong Qi, Linzhao Jia, Yuang Wei, Yuan-Hao Jiang, Xiaoqing Gu,
- Abstract summary: This study explores how to optimize the design and collaboration of a multi-agent system tailored for Socratic teaching.
By incorporating knowledge graphs, this research has bolstered the capability of LLMs to handle specific educational content.
- Score: 1.810537720642316
- License:
- Abstract: With the continuous advancement of educational technology, the demand for Large Language Models (LLMs) as intelligent educational agents in providing personalized learning experiences is rapidly increasing. This study aims to explore how to optimize the design and collaboration of a multi-agent system tailored for Socratic teaching through the integration of LLMs and knowledge graphs in a chain-of-thought dialogue approach, thereby enhancing the accuracy and reliability of educational applications. By incorporating knowledge graphs, this research has bolstered the capability of LLMs to handle specific educational content, ensuring the accuracy and relevance of the information provided. Concurrently, we have focused on developing an effective multi-agent collaboration mechanism to facilitate efficient information exchange and chain dialogues among intelligent agents, significantly improving the quality of educational interaction and learning outcomes. In empirical research within the domain of mathematics education, this framework has demonstrated notable advantages in enhancing the accuracy and credibility of educational interactions. This study not only showcases the potential application of LLMs and knowledge graphs in mathematics teaching but also provides valuable insights and methodologies for the development of future AI-driven educational solutions.
Related papers
- WisdomBot: Tuning Large Language Models with Artificial Intelligence Knowledge [17.74988145184004]
Large language models (LLMs) have emerged as powerful tools in natural language processing (NLP)
This paper presents a novel LLM for education named WisdomBot, which combines the power of LLMs with educational theories.
We introduce two key enhancements during inference, i.e., local knowledge base retrieval augmentation and search engine retrieval augmentation during inference.
arXiv Detail & Related papers (2025-01-22T13:36:46Z) - A Comprehensive Survey on Integrating Large Language Models with Knowledge-Based Methods [4.686190098233778]
The paper highlights the benefits of integrating generative AI with knowledge bases, including improved data contextualization, enhanced model accuracy, and better utilization of knowledge resources.
The findings provide a detailed overview of the current state of research, identify key gaps, and offer actionable recommendations.
arXiv Detail & Related papers (2025-01-19T23:25:21Z) - KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning [74.21524111840652]
This paper proposes textbfKaLM, a textitKnowledge-aligned Language Modeling approach.
It fine-tunes autoregressive large language models to align with KG knowledge via the joint objective of explicit knowledge alignment and implicit knowledge alignment.
Notably, our method achieves a significant performance boost in evaluations of knowledge-driven tasks.
arXiv Detail & Related papers (2024-12-06T11:08:24Z) - Exploring Knowledge Tracing in Tutor-Student Dialogues using LLMs [49.18567856499736]
We investigate whether large language models (LLMs) can be supportive of open-ended dialogue tutoring.
We apply a range of knowledge tracing (KT) methods on the resulting labeled data to track student knowledge levels over an entire dialogue.
We conduct experiments on two tutoring dialogue datasets, and show that a novel yet simple LLM-based method, LLMKT, significantly outperforms existing KT methods in predicting student response correctness in dialogues.
arXiv Detail & Related papers (2024-09-24T22:31:39Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
Large Language Models (LLMs) are used to automate the knowledge tagging task.
We show the strong performance of zero- and few-shot results over math questions knowledge tagging tasks.
By proposing a reinforcement learning-based demonstration retriever, we successfully exploit the great potential of different-sized LLMs.
arXiv Detail & Related papers (2024-06-19T23:30:01Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Taking the Next Step with Generative Artificial Intelligence: The Transformative Role of Multimodal Large Language Models in Science Education [13.87944568193996]
Multimodal Large Language Models (MLLMs) are capable of processing multimodal data including text, sound, and visual inputs.
This paper explores the transformative role of MLLMs in central aspects of science education by presenting exemplary innovative learning scenarios.
arXiv Detail & Related papers (2024-01-01T18:11:43Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, and the integration of diverse multimodal data sources.
The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development.
arXiv Detail & Related papers (2023-12-10T23:32:55Z) - Multi-source Education Knowledge Graph Construction and Fusion for
College Curricula [3.981835878719391]
We propose an automated framework for knowledge extraction, visual KG construction, and graph fusion for the major of Electronic Information.
Our objective is to enhance the learning efficiency of students and to explore new educational paradigms enabled by AI.
arXiv Detail & Related papers (2023-05-08T09:25:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.