Neural general circulation models optimized to predict satellite-based precipitation observations
- URL: http://arxiv.org/abs/2412.11973v1
- Date: Mon, 16 Dec 2024 16:55:34 GMT
- Title: Neural general circulation models optimized to predict satellite-based precipitation observations
- Authors: Janni Yuval, Ian Langmore, Dmitrii Kochkov, Stephan Hoyer,
- Abstract summary: We present a hybrid model that is trained directly on satellite-based precipitation observations.
Our approach yields reduced biases, a more realistic precipitation distribution, and improved representation of extremes.
It outperforms the mid-range precipitation forecast of the ECMWF ensemble.
- Score: 2.4607544620286257
- License:
- Abstract: Climate models struggle to accurately simulate precipitation, particularly extremes and the diurnal cycle. Here, we present a hybrid model that is trained directly on satellite-based precipitation observations. Our model runs at 2.8$^\circ$ resolution and is built on the differentiable NeuralGCM framework. The model demonstrates significant improvements over existing general circulation models, the ERA5 reanalysis, and a global cloud-resolving model in simulating precipitation. Our approach yields reduced biases, a more realistic precipitation distribution, improved representation of extremes, and a more accurate diurnal cycle. Furthermore, it outperforms the mid-range precipitation forecast of the ECMWF ensemble. This advance paves the way for more reliable simulations of current climate and demonstrates how training on observations can be used to directly improve GCMs.
Related papers
- TAUDiff: Improving statistical downscaling for extreme weather events using generative diffusion models [0.0]
It is crucial to achieve rapid turnaround, dynamical consistency, and accurate-temporal recovery.
We propose an efficient diffusion model TiffAUD, that combines a deterministic model mean downscaling with a smaller generative diffusion model for recovering the fine-scale features.
Our approach can not only ensure quicker simulation of extreme events but also reduce overall carbon footprint due to low inference times.
arXiv Detail & Related papers (2024-12-18T09:05:19Z) - Leadsee-Precip: A Deep Learning Diagnostic Model for Precipitation [0.0]
We propose Leadsee-Precip, a global deep learning model to generate precipitation from meteorological circulation fields.
The model utilizes an information balance scheme to tackle the challenges of predicting heavy precipitation.
The heavy precipitation from Leadsee-Precip is more consistent with observations and shows competitive performance against global numerical weather prediction models.
arXiv Detail & Related papers (2024-11-19T16:51:56Z) - Embedding machine-learnt sub-grid variability improves climate model biases [0.44998333629984877]
Under-representation of cloud formation is a long-standing bias associated with climate simulations.
We overcome these biases by embedding a Multi-Output Gaussian Process (MOGP) trained on high resolution Unified Model simulations.
Ten-year predictions are generated for both control and ML-hybrid models.
arXiv Detail & Related papers (2024-06-13T19:35:58Z) - DiffObs: Generative Diffusion for Global Forecasting of Satellite Observations [4.653770685661304]
This work presents an autoregressive generative diffusion model (DiffObs) to predict the global evolution of daily precipitation.
The model is trained to probabilistically forecast day-ahead precipitation. Nonetheless, it is stable for multi-month rollouts, which reveal a qualitatively realistic superposition of convectively coupled wave modes in the tropics.
arXiv Detail & Related papers (2024-04-04T05:24:22Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.