Forecasting Tropical Cyclones with Cascaded Diffusion Models
- URL: http://arxiv.org/abs/2310.01690v7
- Date: Tue, 30 Jul 2024 12:16:14 GMT
- Title: Forecasting Tropical Cyclones with Cascaded Diffusion Models
- Authors: Pritthijit Nath, Pancham Shukla, Shuai Wang, César Quilodrán-Casas,
- Abstract summary: This work leverages generative diffusion models to forecast cyclone trajectories and precipitation patterns.
Forecasts can be produced in as little as 30 mins on a single Nvidia A30/RTX 2080 Ti.
- Score: 4.272401529389713
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As tropical cyclones become more intense due to climate change, the rise of Al-based modelling provides a more affordable and accessible approach compared to traditional methods based on mathematical models. This work leverages generative diffusion models to forecast cyclone trajectories and precipitation patterns by integrating satellite imaging, remote sensing, and atmospheric data. It employs a cascaded approach that incorporates three main tasks: forecasting, super-resolution, and precipitation modelling. The training dataset includes 51 cyclones from six major tropical cyclone basins from January 2019 - March 2023. Experiments demonstrate that the final forecasts from the cascaded models show accurate predictions up to a 36-hour rollout, with excellent Structural Similarity (SSIM) and Peak-Singal-To-Noise Ratio (PSNR) values exceeding 0.5 and 20 dB, respectively, for all three tasks. The 36-hour forecasts can be produced in as little as 30 mins on a single Nvidia A30/RTX 2080 Ti. This work also highlights the promising efficiency of Al methods such as diffusion models for high-performance needs in weather forecasting, such as tropical cyclone forecasting, while remaining computationally affordable, making them ideal for highly vulnerable regions with critical forecasting needs and financial limitations. Code accessible at https://github.com/nathzi1505/forecast-diffmodels.
Related papers
- Evaluation of Tropical Cyclone Track and Intensity Forecasts from Artificial Intelligence Weather Prediction (AIWP) Models [0.6282171844772422]
Four open-source AIWP models are considered (FourCastNetv1, FourCastNetv2-small, GraphCast-operational and Pangu-Weather)
The contribution of the AIWP models to the NHC model consensus was also evaluated.
Despite substantial negative intensity biases, the AIWP models have a neutral impact on the intensity consensus.
arXiv Detail & Related papers (2024-09-08T22:58:46Z) - Exploring the Potential of Hybrid Machine-Learning/Physics-Based Modeling for Atmospheric/Oceanic Prediction Beyond the Medium Range [0.0]
This paper explores the potential of a hybrid modeling approach that combines machine learning (ML) with conventional physics-based modeling for weather prediction beyond the medium range.
The model is based on the low-resolution, simplified parameterization atmospheric general circulation model (AGCM) SPEEDY.
The model has skill in predicting the El Nino cycle and its global teleconnections with precipitation for 3-7 months depending on the season.
arXiv Detail & Related papers (2024-05-29T20:56:44Z) - FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting [16.562512279873577]
We introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days.
FuXi-ENS runs at a significantly increased spatial resolution of 0.25textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables.
Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations.
arXiv Detail & Related papers (2024-05-09T17:15:09Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - FourCastNet: A Global Data-driven High-resolution Weather Model using
Adaptive Fourier Neural Operators [45.520430157112884]
FourCastNet accurately forecasts high-resolution, fast-timescale variables such as the surface wind speed, precipitation, and atmospheric water vapor.
It has important implications for planning wind energy resources, predicting extreme weather events such as tropical cyclones, extra-tropical cyclones, and atmospheric rivers.
FourCastNet generates a week-long forecast in less than 2 seconds, orders of magnitude faster than IFS.
arXiv Detail & Related papers (2022-02-22T22:19:35Z) - Sub-seasonal forecasting with a large ensemble of deep-learning weather
prediction models [6.882042556551611]
We present an ensemble prediction system using a Deep Learning Weather Prediction (DLWP) model.
This model uses convolutional neural networks (CNNs) on a cubed sphere grid to produce global forecasts.
Ensemble spread is primarily produced by randomizing the CNN training process to create a set of 32 DLWP models.
arXiv Detail & Related papers (2021-02-09T20:14:43Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.