論文の概要: Speak & Improve Challenge 2025: Tasks and Baseline Systems
- arxiv url: http://arxiv.org/abs/2412.11985v1
- Date: Mon, 16 Dec 2024 17:05:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:58:21.351724
- Title: Speak & Improve Challenge 2025: Tasks and Baseline Systems
- Title(参考訳): Speak & Improve Challenge 2025: Tasks and Baseline Systems
- Authors: Mengjie Qian, Kate Knill, Stefano Banno, Siyuan Tang, Penny Karanasou, Mark J. F. Gales, Diane Nicholls,
- Abstract要約: Speak & Improve Challenge 2025: Spoken Language Assessment and Feedback"は、ISCA SLaTE 2025ワークショップに関連する課題である。
この課題の目標は、基礎技術と言語学習の両方のフィードバックに関連するタスクを用いて、音声言語アセスメントとフィードバックの研究を進めることである。
本稿では、S&I Corpus 2025の課題と、チャレンジ用にリリースされたベースラインシステムについて述べる。
- 参考スコア(独自算出の注目度): 28.877872578497854
- License:
- Abstract: This paper presents the "Speak & Improve Challenge 2025: Spoken Language Assessment and Feedback" -- a challenge associated with the ISCA SLaTE 2025 Workshop. The goal of the challenge is to advance research on spoken language assessment and feedback, with tasks associated with both the underlying technology and language learning feedback. Linked with the challenge, the Speak & Improve (S&I) Corpus 2025 is being pre-released, a dataset of L2 learner English data with holistic scores and language error annotation, collected from open (spontaneous) speaking tests on the Speak & Improve learning platform. The corpus consists of 340 hours of audio data from second language English learners with holistic scores, and a 60-hour subset with manual transcriptions and error labels. The Challenge has four shared tasks: Automatic Speech Recognition (ASR), Spoken Language Assessment (SLA), Spoken Grammatical Error Correction (SGEC), and Spoken Grammatical Error Correction Feedback (SGECF). Each of these tasks has a closed track where a predetermined set of models and data sources are allowed to be used, and an open track where any public resource may be used. Challenge participants may do one or more of the tasks. This paper describes the challenge, the S&I Corpus 2025, and the baseline systems released for the Challenge.
- Abstract(参考訳): 本稿では,「Speak & Improve Challenge 2025: Spoken Language Assessment and Feedback」について紹介する。
この課題の目標は、基礎技術と言語学習の両方のフィードバックに関連するタスクを用いて、音声言語アセスメントとフィードバックの研究を進めることである。
この課題に関連して、Speak & Improve (S&I) Corpus 2025がプレリリースされ、Speak & Improve学習プラットフォーム上で開かれた(自発的に)音声テストから収集された、総合的なスコアと言語エラーアノテーションを備えたL2学習者の英語データのデータセットである。
コーパスは英語の第二言語学習者による340時間の音声データと、手書き書き起こしとエラーラベル付き60時間のサブセットで構成されている。
チャレンジには、自動音声認識(ASR)、音声言語アセスメント(SLA)、音声文法誤り訂正(SGEC)、音声文法誤り訂正フィードバック(SGECF)の4つの共通タスクがある。
これらのタスクには、所定のモデルとデータソースを使用することができるクローズドトラックと、任意の公開リソースを使用することができるオープントラックがある。
チャレンジ参加者は1つ以上のタスクをこなすことができる。
本稿では,課題,S&I Corpus 2025,およびチャレンジ用ベースラインシステムについて述べる。
関連論文リスト
- 1-800-SHARED-TASKS @ NLU of Devanagari Script Languages: Detection of Language, Hate Speech, and Targets using LLMs [0.0]
本稿では,CHiPSAL 2025共有タスクの入力に関する詳細なシステム記述について述べる。
本稿では,Devanagariスクリプト言語における言語検出,ヘイトスピーチ識別,ターゲット検出に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-11T10:34:36Z) - Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition [110.8431434620642]
生成音声の書き起こし誤り訂正(GenSEC)の課題について紹介する。
この課題は、(i)ASR後の転写補正、(ii)話者タグ付け、(iii)感情認識という、3つのASR後の言語モデリングタスクを含む。
本稿では,ベースライン評価から得られた知見と,今後の評価設計における教訓について論じる。
論文 参考訳(メタデータ) (2024-09-15T16:32:49Z) - Perception Test 2023: A Summary of the First Challenge And Outcome [67.0525378209708]
最初のパーセプションテストは、IEEE/CVF International Conference on Computer Vision (ICCV) 2023と共に半日間のワークショップとして開催された。
目標は、最近提案されたPerception Testベンチマークで最先端のビデオモデルをベンチマークすることであった。
このレポートでは、タスク記述、メトリクス、ベースライン、結果について要約しています。
論文 参考訳(メタデータ) (2023-12-20T15:12:27Z) - Summary of the DISPLACE Challenge 2023 -- DIarization of SPeaker and
LAnguage in Conversational Environments [28.618333018398122]
複数の言語が小さな地理的近傍で話される多言語社会では、非公式な会話は言語が混在することが多い。
既存の音声技術は、音声データが複数の言語や話者との多様性に富んでいるような会話から情報を抽出するのに非効率である可能性がある。
DISPLACEチャレンジは、この挑戦的な状況下で話者と言語ダイアリゼーション技術の評価とベンチマークを行うためのオープンコールを構成する。
論文 参考訳(メタデータ) (2023-11-21T12:23:58Z) - Findings of the 2023 ML-SUPERB Challenge: Pre-Training and Evaluation
over More Languages and Beyond [89.54151859266202]
2023年のMultilingual Speech Universal Performance Benchmark (ML-SUPERB) Challengeは、宣言されたSUPERBフレームワークに拡張される。
この挑戦は12のモデル提出と54の言語コーパスを集め、154の言語を含む包括的なベンチマークをもたらした。
この結果は、単にスケーリングモデルが多言語音声タスクにおける決定的な解決策ではないことを示唆している。
論文 参考訳(メタデータ) (2023-10-09T08:30:01Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
公的な事前訓練された音声のみのモデルと言語のみのモデルからなる複合アーキテクチャ上に構築された音声言語モデルであるComSLを提案する。
提案手法は,エンドツーエンドの音声-テキスト翻訳タスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:42:15Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZは音声TODのための大規模音声テキストデータセットである。
SpokenWOZでは、クロスターンスロットと推論スロット検出が新たな課題である。
論文 参考訳(メタデータ) (2023-05-22T13:47:51Z) - Pretraining Approaches for Spoken Language Recognition: TalTech
Submission to the OLR 2021 Challenge [0.0]
この論文は、東洋言語認識2021チャレンジへの提案に基づいています。
制約トラックに対しては,まず,多言語自動音声認識のためのコンバータベースのエンコーダデコーダモデルを訓練した。
制約のないタスクでは、外部で利用可能な事前訓練されたモデルと外部データの両方を頼りにしました。
論文 参考訳(メタデータ) (2022-05-14T15:17:08Z) - VoxSRC 2020: The Second VoxCeleb Speaker Recognition Challenge [99.82500204110015]
第2回「VoxCeleb Speaker Recognition Challenge」をInterspeech 2020と共に開催しました。
この課題の目的は、現在のスピーカー認識技術が、制約のないデータまたは野生のデータでスピーカーをダイアライズして認識できるかどうかを評価することでした。
本稿では,その課題を概説し,ベースライン,使用方法,結果について述べる。
論文 参考訳(メタデータ) (2020-12-12T17:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。