論文の概要: The Open Source Advantage in Large Language Models (LLMs)
- arxiv url: http://arxiv.org/abs/2412.12004v2
- Date: Sun, 02 Feb 2025 21:27:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:07:27.174845
- Title: The Open Source Advantage in Large Language Models (LLMs)
- Title(参考訳): 大規模言語モデル(LLM)におけるオープンソースアドバンテージ
- Authors: Jiya Manchanda, Laura Boettcher, Matheus Westphalen, Jasser Jasser,
- Abstract要約: 大規模言語モデル(LLM)は急速に進歩した自然言語処理を持ち、テキスト生成、機械翻訳、ドメイン固有の推論といったタスクにおいて大きなブレークスルーを引き起こしている。
GPT-4のようなクローズドソースモデルは、最先端のパフォーマンスを提供するが、アクセシビリティを制限し、外部の監視を行う。
LLaMAやMixtralといったオープンソースフレームワークはアクセスを民主化し、コラボレーションを促進し、多様なアプリケーションをサポートする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) have rapidly advanced natural language processing, driving significant breakthroughs in tasks such as text generation, machine translation, and domain-specific reasoning. The field now faces a critical dilemma in its approach: closed-source models like GPT-4 deliver state-of-the-art performance but restrict reproducibility, accessibility, and external oversight, while open-source frameworks like LLaMA and Mixtral democratize access, foster collaboration, and support diverse applications, achieving competitive results through techniques like instruction tuning and LoRA. Hybrid approaches address challenges like bias mitigation and resource accessibility by combining the scalability of closed-source systems with the transparency and inclusivity of open-source framework. However, in this position paper, we argue that open-source remains the most robust path for advancing LLM research and ethical deployment.
- Abstract(参考訳): 大規模言語モデル(LLM)は急速に進歩した自然言語処理を持ち、テキスト生成、機械翻訳、ドメイン固有の推論といったタスクにおいて大きなブレークスルーを引き起こしている。
GPT-4のようなクローズドソースモデルは、最先端のパフォーマンスを提供するが、再現性、アクセシビリティ、外部の監視を制限する。一方、LLaMAやMixtralといったオープンソースフレームワークは、アクセスを民主化し、コラボレーションを奨励し、多様なアプリケーションをサポートし、インストラクションチューニングやLoRAといった技術による競合的な結果を達成する。
ハイブリッドアプローチは、クローズドソースシステムのスケーラビリティとオープンソースフレームワークの透明性と傾斜度を組み合わせることで、バイアス軽減やリソースアクセシビリティといった課題に対処する。
しかし、本稿では、LLM研究と倫理的展開を進める上で、オープンソースが依然として最も堅牢な道であると論じている。
関連論文リスト
- Is Open Source the Future of AI? A Data-Driven Approach [41.94295877935867]
大規模言語モデル(LLM)は、学術と産業の中心となっている。
鍵となる問題は、プロプライエタリなモデルの信頼性であり、オープンソースはしばしばソリューションとして提案される。
オープンソースは、潜在的な誤用、財務上の不利益、知的財産権の懸念など、課題を提示している。
論文 参考訳(メタデータ) (2025-01-27T09:03:49Z) - A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning [9.806901443019008]
Federated Edge Learning (FEL)は、分散環境でのモデルトレーニングを可能にすると同時に、ユーザデータの物理的分離を利用することで、ユーザのプライバシを確保する。
IoT(Internet of Things)やSmart Earthといった複雑なアプリケーションシナリオの開発により、従来のリソース割り当てスキームは、これらの増大する計算および通信要求を効果的にサポートすることができなくなった。
本稿では,複数の資源需要が増大する中で,計算と通信の多面的課題を体系的に解決する。
論文 参考訳(メタデータ) (2024-10-10T13:02:00Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
TRACE と呼ばれるコントラスト埋め込みを用いた新しいTRansformer-based Attribution フレームワークを提案する。
TRACEは情報源の属性を精度良く改善し,大規模言語モデルの信頼性と信頼性を高める貴重なツールであることを示す。
論文 参考訳(メタデータ) (2024-07-06T07:19:30Z) - Evaluating the Efficacy of Open-Source LLMs in Enterprise-Specific RAG Systems: A Comparative Study of Performance and Scalability [0.0]
本稿では,オープンソースの大規模言語モデル(LLM)とその検索・拡張生成(RAG)タスクへの応用について述べる。
この結果から,オープンソースのLCMと効果的な埋め込み技術が組み合わさって,RAGシステムの精度と効率を大幅に向上させることが示唆された。
論文 参考訳(メタデータ) (2024-06-17T11:22:25Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
大規模言語モデル(LLM)はテキスト生成に革命をもたらし、人間の文章を忠実に模倣する出力を生成する。
我々は、ブラックボックステキスト検出における最先端性能を再定義する革新的なフレームワークであるDLD(Dis Distribution-Aligned LLMs Detection)を提案する。
DALDは、サロゲートモデルの分布を未知の目標LLMの分布と整合させ、高速モデルの反復に対する検出能力とレジリエンスを向上するように設計されている。
論文 参考訳(メタデータ) (2024-06-07T19:38:05Z) - Is open source software culture enough to make AI a common ? [0.0]
言語モデル(LM)は人工知能(AI)の分野でますます普及している
この疑問は、ユーザコミュニティによって管理され、維持される共通のリソースであるかどうかというものである。
LMを作成するのに必要なデータとリソースをコモンズとして扱うことの潜在的な利点を強調します。
論文 参考訳(メタデータ) (2024-03-19T14:43:52Z) - FOFO: A Benchmark to Evaluate LLMs' Format-Following Capability [70.84333325049123]
FoFoは、大規模言語モデル(LLM)の複雑なドメイン固有のフォーマットに従う能力を評価するための先駆的なベンチマークである。
本稿では,大規模言語モデル(LLM)の複雑なドメイン固有フォーマットに従う能力を評価するための先駆的ベンチマークであるFoFoを提案する。
論文 参考訳(メタデータ) (2024-02-28T19:23:27Z) - GlotLID: Language Identification for Low-Resource Languages [51.38634652914054]
GlotLID-M は広い範囲、信頼性、効率性のデシラタを満たす LID モデルである。
1665の言語を識別し、以前の作業に比べてカバー範囲が大幅に増加した。
論文 参考訳(メタデータ) (2023-10-24T23:45:57Z) - External Reasoning: Towards Multi-Large-Language-Models Interchangeable
Assistance with Human Feedback [0.0]
本稿では、外部リポジトリからの知識の選択的統合により、LLM(Large Language Models)を拡張できることを提案する。
このアプローチの中心は、複数のLLMインターチェンジ支援に基づくTextbf外部推論のためのタイレッドポリシーの確立である。
結果は、Crefcomparisonにおける最先端のパフォーマンスを示し、ChatPDF.comを含む既存のソリューションを上回った。
論文 参考訳(メタデータ) (2023-07-05T17:05:32Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。