Thermodynamics-informed graph neural networks for real-time simulation of digital human twins
- URL: http://arxiv.org/abs/2412.12034v1
- Date: Mon, 16 Dec 2024 18:01:40 GMT
- Title: Thermodynamics-informed graph neural networks for real-time simulation of digital human twins
- Authors: Lucas Tesán, David González, Pedro Martins, Elías Cueto,
- Abstract summary: This paper presents a novel methodology aimed at advancing current lines of research in soft tissue simulation.
The proposed approach integrates the geometric bias of graph neural networks with the physical bias derived from the imposition of a metriplectic structure.
Based on the adopted methodologies, we propose a model that predicts human liver responses to traction and compression loads in as little as 7.3 milliseconds.
- Score: 2.6811507121199325
- License:
- Abstract: The growing importance of real-time simulation in the medical field has exposed the limitations and bottlenecks inherent in the digital representation of complex biological systems. This paper presents a novel methodology aimed at advancing current lines of research in soft tissue simulation. The proposed approach introduces a hybrid model that integrates the geometric bias of graph neural networks with the physical bias derived from the imposition of a metriplectic structure as soft and hard constrains in the architecture, being able to simulate hepatic tissue with dissipative properties. This approach provides an efficient solution capable of generating predictions at high feedback rate while maintaining a remarkable generalization ability for previously unseen anatomies. This makes these features particularly relevant in the context of precision medicine and haptic rendering. Based on the adopted methodologies, we propose a model that predicts human liver responses to traction and compression loads in as little as 7.3 milliseconds for optimized configurations and as fast as 1.65 milliseconds in the most efficient cases, all in the forward pass. The model achieves relative position errors below 0.15\%, with stress tensor and velocity estimations maintaining relative errors under 7\%. This demonstrates the robustness of the approach developed, which is capable of handling diverse load states and anatomies effectively. This work highlights the feasibility of integrating real-time simulation with patient-specific geometries through deep learning, paving the way for more robust digital human twins in medical applications.
Related papers
- Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
Computational cardiovascular flow modeling plays a crucial role in understanding blood flow dynamics.
Traditional 1D models based on finite element methods (FEM) often lack accuracy compared to 3D averaged solutions.
This study introduces a novel physics-constrained machine learning technique that enhances the accuracy of 1D blood flow models.
arXiv Detail & Related papers (2024-11-08T15:22:20Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Physics-informed Neural Network Estimation of Material Properties in Soft Tissue Nonlinear Biomechanical Models [2.8763745263714005]
We propose a new approach which relies on the combination of physics-informed neural networks (PINNs) with three-dimensional soft tissue nonlinear biomechanical models.
The proposed learning algorithm encodes information from a limited amount of displacement and, in some cases, strain data, that can be routinely acquired in the clinical setting.
Several benchmarks are presented to show the accuracy and robustness of the proposed method.
arXiv Detail & Related papers (2023-12-15T13:41:20Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Learning Reduced-Order Models for Cardiovascular Simulations with Graph
Neural Networks [1.2643625859899612]
We develop one-dimensional reduced-order models that simulate blood flow dynamics using a graph neural network trained on three-dimensional hemodynamic simulation data.
Our method exhibits superior performance compared to physics-based one-dimensional models, while maintaining high efficiency at inference time.
arXiv Detail & Related papers (2023-03-13T17:32:46Z) - Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep
Learning Model [0.0]
We present an architecture that is tailored to predict high-resolution (spatial and temporal) velocity fields for complex synthetic vascular geometries.
Compared to CFD simulations, the velocity field can be estimated with a mean absolute error of 0.024 m/s, whereas the run time reduces from several hours on a high-performance cluster to a few seconds on a consumer graphical processing unit.
arXiv Detail & Related papers (2023-02-13T17:56:00Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
We develop a new model-based data normalization pre-processing procedure for homogenizing the sample contrast.
We demonstrate this framework's capabilities on experimental measurements of epithelial buccal cells and Caenorhabditis elegans worms.
arXiv Detail & Related papers (2021-03-29T17:43:56Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.