Harnessing Transfer Learning from Swahili: Advancing Solutions for Comorian Dialects
- URL: http://arxiv.org/abs/2412.12143v1
- Date: Mon, 09 Dec 2024 22:47:41 GMT
- Title: Harnessing Transfer Learning from Swahili: Advancing Solutions for Comorian Dialects
- Authors: Naira Abdou Mohamed, Zakarya Erraji, Abdessalam Bahafid, Imade Benelallam,
- Abstract summary: We aim to pioneer NLP technologies for Comorian, a group of four languages or dialects belonging to the Bantu family.
Our approach is motivated by the hypothesis that if a human can understand a different language from their native language with little or no effort, it would be entirely possible to model this process on a machine.
- Score: 0.0
- License:
- Abstract: If today some African languages like Swahili have enough resources to develop high-performing Natural Language Processing (NLP) systems, many other languages spoken on the continent are still lacking such support. For these languages, still in their infancy, several possibilities exist to address this critical lack of data. Among them is Transfer Learning, which allows low-resource languages to benefit from the good representation of other languages that are similar to them. In this work, we adopt a similar approach, aiming to pioneer NLP technologies for Comorian, a group of four languages or dialects belonging to the Bantu family. Our approach is initially motivated by the hypothesis that if a human can understand a different language from their native language with little or no effort, it would be entirely possible to model this process on a machine. To achieve this, we consider ways to construct Comorian datasets mixed with Swahili. One thing to note here is that in terms of Swahili data, we only focus on elements that are closest to Comorian by calculating lexical distances between candidate and source data. We empirically test this hypothesis in two use cases: Automatic Speech Recognition (ASR) and Machine Translation (MT). Our MT model achieved ROUGE-1, ROUGE-2, and ROUGE-L scores of 0.6826, 0.42, and 0.6532, respectively, while our ASR system recorded a WER of 39.50\% and a CER of 13.76\%. This research is crucial for advancing NLP in underrepresented languages, with potential to preserve and promote Comorian linguistic heritage in the digital age.
Related papers
- Voices Unheard: NLP Resources and Models for Yorùbá Regional Dialects [72.18753241750964]
Yorub'a is an African language with roughly 47 million speakers.
Recent efforts to develop NLP technologies for African languages have focused on their standard dialects.
We take steps towards bridging this gap by introducing a new high-quality parallel text and speech corpus.
arXiv Detail & Related papers (2024-06-27T22:38:04Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - Neural Machine Translation for the Indigenous Languages of the Americas:
An Introduction [102.13536517783837]
Most languages from the Americas are among them, having a limited amount of parallel and monolingual data, if any.
We discuss the recent advances and findings and open questions, product of an increased interest of the NLP community in these languages.
arXiv Detail & Related papers (2023-06-11T23:27:47Z) - Transfer to a Low-Resource Language via Close Relatives: The Case Study
on Faroese [54.00582760714034]
Cross-lingual NLP transfer can be improved by exploiting data and models of high-resource languages.
We release a new web corpus of Faroese and Faroese datasets for named entity recognition (NER), semantic text similarity (STS) and new language models trained on all Scandinavian languages.
arXiv Detail & Related papers (2023-04-18T08:42:38Z) - \`It\`ak\'ur\`oso: Exploiting Cross-Lingual Transferability for Natural
Language Generation of Dialogues in Low-Resource, African Languages [0.9511471519043974]
We investigate the possibility of cross-lingual transfer from a state-of-the-art (SoTA) deep monolingual model to 6 African languages.
The languages are Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yorub'a.
The results show that the hypothesis that deep monolingual models learn some abstractions that generalise across languages holds.
arXiv Detail & Related papers (2022-04-17T20:23:04Z) - A Survey of Multilingual Models for Automatic Speech Recognition [6.657361001202456]
Cross-lingual transfer is an attractive solution to the problem of multilingual Automatic Speech Recognition.
Recent advances in Self Supervised Learning are opening up avenues for unlabeled speech data to be used in multilingual ASR models.
We present best practices for building multilingual models from research across diverse languages and techniques.
arXiv Detail & Related papers (2022-02-25T09:31:40Z) - Towards Building ASR Systems for the Next Billion Users [15.867823754118422]
We make contributions towards building ASR systems for low resource languages from the Indian subcontinent.
First, we curate 17,000 hours of raw speech data for 40 Indian languages.
Using this raw speech data we pretrain several variants of wav2vec style models for 40 Indian languages.
arXiv Detail & Related papers (2021-11-06T19:34:33Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
We focus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi.
We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank leads to performance close to those obtained with the same architecture pre-trained on large multilingual and monolingual models.
arXiv Detail & Related papers (2021-10-26T14:59:16Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - That Sounds Familiar: an Analysis of Phonetic Representations Transfer
Across Languages [72.9927937955371]
We use the resources existing in other languages to train a multilingual automatic speech recognition model.
We observe significant improvements across all languages in the multilingual setting, and stark degradation in the crosslingual setting.
Our analysis uncovered that even the phones that are unique to a single language can benefit greatly from adding training data from other languages.
arXiv Detail & Related papers (2020-05-16T22:28:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.