論文の概要: SGPT: Few-Shot Prompt Tuning for Signed Graphs
- arxiv url: http://arxiv.org/abs/2412.12155v2
- Date: Sun, 17 Aug 2025 16:07:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:09.735821
- Title: SGPT: Few-Shot Prompt Tuning for Signed Graphs
- Title(参考訳): SGPT: サイン付きグラフのためのいくつかのショットプロンプトチューニング
- Authors: Zian Zhai, Sima Qing, Xiaoyang Wang, Wenjie Zhang,
- Abstract要約: Signed Graph Prompt Tuning(SGPT)は、事前トレーニングされた未署名のGNNを、数ショットの署名付きグラフタスクに適応させるグラフプロンプトフレームワークである。
我々は,SGPTが既存の最先端手法を著しく上回ることを示す7つのベンチマークグラフデータセットの実験を行った。
- 参考スコア(独自算出の注目度): 8.42756062274768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Signed Graph Neural Networks (SGNNs) are effective in learning expressive representations for signed graphs but typically require substantial task-specific labels, limiting their applicability in label-scarce industrial scenarios. In contrast, unsigned graph structures are abundant and can be readily leveraged to pre-train Graph Neural Networks (GNNs), offering a promising solution to reduce supervision requirements in downstream signed graph tasks. However, transferring knowledge from unsigned to signed graphs is non-trivial due to the fundamental discrepancies in graph types and task objectives between pre-training and downstream phases. To address this challenge, we propose Signed Graph Prompt Tuning (SGPT), a novel graph prompting framework that adapts pre-trained unsigned GNNs to few-shot signed graph tasks. We first design a graph template based on balance theory to disentangle mixed node relationships introduced by negative links, mitigating the structural mismatches between unsigned and signed graphs. We further introduce a task template that reformulates downstream signed tasks into a unified link prediction objective, aligning their optimization goals with the pre-training task. Furthermore, we develop feature prompts that align downstream semantic spaces with the feature spaces learned during pre-training, and semantic prompts to integrate link sign semantics in a task-aware manner. We conduct extensive experiments on seven benchmark signed graph datasets, demonstrating that SGPT significantly outperforms existing state-of-the-art methods, establishing a powerful and generalizable solution for few-shot signed graph learning.
- Abstract(参考訳): 符号付きグラフニューラルネットワーク(SGNN)は、署名付きグラフの表現表現を学ぶのに有効であるが、通常はかなりのタスク固有のラベルを必要とする。
対照的に、符号なしグラフ構造は豊富で、容易にトレーニング前のグラフニューラルネットワーク(GNN)に活用でき、下流の署名されたグラフタスクの監視要件を削減できる有望なソリューションを提供する。
しかし、符号のないグラフから符号付きグラフへの知識の転送は、グラフの種類と事前学習と下流のフェーズ間のタスク目標の根本的な相違のため、簡単ではない。
この課題に対処するため,サイン付きグラフプロンプトチューニング(SGPT,Signed Graph Prompt Tuning)を提案する。
まずバランス理論に基づくグラフテンプレートを設計し、負のリンクによって導入された混合ノード関係を解離させ、符号なしグラフと符号付きグラフの間の構造ミスマッチを緩和する。
さらに、下流の署名されたタスクを統合リンク予測目標に再構成し、最適化目標を事前学習タスクと整合させるタスクテンプレートを導入する。
さらに,下流のセマンティック空間を事前学習中に学習した特徴空間と整合させる機能プロンプトを開発し,タスク対応の方法でリンクサインセマンティックスを統合するセマンティックプロンプトを開発した。
我々は7つのベンチマークグラフデータセットに対して広範な実験を行い、SGPTが既存の最先端の手法を著しく上回り、数発の符号グラフ学習のための強力で一般化可能なソリューションを確立することを実証した。
関連論文リスト
- Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
タスクツリーを用いたグラフのクロスタスク一般化のための新しい手法を提案する。
本稿では,グラフニューラルネットワーク(GNN)を多種多様なタスクツリー上で事前学習することにより,伝達可能な知識を誘導することを示す。
これにより、最小限の微調整で下流タスクに効率的に適応できる。
論文 参考訳(メタデータ) (2024-12-21T02:07:43Z) - Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - GraphAlign: Pretraining One Graph Neural Network on Multiple Graphs via Feature Alignment [30.56443056293688]
グラフ自己教師型学習(SSL)は、グラフ構造化データによるマイニングと学習をかなり約束する。
本研究では,グラフニューラルネットワーク(GNN)を,豊富なノード特徴を持つグラフのコレクションにプリトレーニングすることを目的としている。
本稿では,既存のグラフSSLフレームワークにシームレスに統合可能な汎用GraphAlign法を提案する。
論文 参考訳(メタデータ) (2024-06-05T05:22:32Z) - Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs [20.406549548630156]
GraphPromptは、グラフに関する新しい事前トレーニングおよびプロンプトフレームワークである。
トレーニング済みタスクとダウンストリームタスクを共通タスクテンプレートに統合する。
また、学習可能なプロンプトを使用して、トレーニング済みモデルから最も関連性の高い知識を見つけるために、下流タスクを支援する。
論文 参考訳(メタデータ) (2023-11-26T14:35:28Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Multi-View Graph Representation Learning Beyond Homophily [2.601278669926709]
非教師付きグラフ表現学習(GRL)は,多種多様なグラフ情報をラベル管理なしでタスクに依存しない埋め込みに抽出することを目的としている。
MVGE(Multi-view Graph)と呼ばれる新しいフレームワークを提案し、キーデザインのセットを特定した。
論文 参考訳(メタデータ) (2023-04-15T08:35:49Z) - GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural
Networks [16.455234748896157]
GraphPromptは、グラフに関する新しい事前トレーニングおよびプロンプトフレームワークである。
トレーニング済みタスクとダウンストリームタスクを共通タスクテンプレートに統合する。
また、トレーニング前のモデルから最も関連性の高い知識を見つけるために、下流タスクを支援するための学習可能なプロンプトも採用している。
論文 参考訳(メタデータ) (2023-02-16T02:51:38Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
グラフベースのSemi-Supervised Learning (SSL)は、少数のラベル付きデータのラベルをグラフ経由で残りの巨大なラベル付きデータに転送することを目的としている。
本稿では,データ類似性とグラフ構造を両立させ,監視信号の強化を図るため,新しいGCNベースのSSLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-15T13:59:28Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。