DLSOM: A Deep learning-based strategy for liver cancer subtyping
- URL: http://arxiv.org/abs/2412.12214v1
- Date: Sun, 15 Dec 2024 23:13:29 GMT
- Title: DLSOM: A Deep learning-based strategy for liver cancer subtyping
- Authors: Fabio Zamio,
- Abstract summary: Liver cancer is a leading cause of cancer-related mortality worldwide.
This study introduces DLSOM, a deep learning framework utilizing stacked autoencoders to analyze the complete somatic mutation landscape of 1,139 liver cancer samples.
- Score: 0.0
- License:
- Abstract: Liver cancer is a leading cause of cancer-related mortality worldwide, with its high genetic heterogeneity complicating diagnosis and treatment. This study introduces DLSOM, a deep learning framework utilizing stacked autoencoders to analyze the complete somatic mutation landscape of 1,139 liver cancer samples, covering 20,356 protein-coding genes. By transforming high-dimensional mutation data into three low-dimensional features, DLSOM enables robust clustering and identifies five distinct liver cancer subtypes with unique mutational, functional, and biological profiles. Subtypes SC1 and SC2 exhibit higher mutational loads, while SC3 has the lowest, reflecting mutational heterogeneity. Novel and COSMIC-associated mutational signatures reveal subtype-specific molecular mechanisms, including links to hypermutation and chemotherapy resistance. Functional analyses further highlight the biological relevance of each subtype. This comprehensive framework advances precision medicine in liver cancer by enabling the development of subtype-specific diagnostics, biomarkers, and therapies, showcasing the potential of deep learning in addressing cancer complexity.
Related papers
- Precision Cancer Classification and Biomarker Identification from mRNA Gene Expression via Dimensionality Reduction and Explainable AI [0.9423257767158634]
This research presents a comprehensive pipeline designed to accurately identify 33 distinct cancer types and their corresponding gene sets.
It incorporates a combination of normalization and feature selection techniques to reduce dataset dimensionality effectively.
We leverage Explainable AI to elucidate the biological significance of the identified cancer-specific genes.
arXiv Detail & Related papers (2024-10-08T18:56:31Z) - MoCLIM: Towards Accurate Cancer Subtyping via Multi-Omics Contrastive
Learning with Omics-Inference Modeling [9.900594964709116]
We develop MoCLIM, a representation learning framework for cancer subtyping.
We show that our approach significantly improves data fit and subtyping performance in fewer high-dimensional cancer instances.
Our framework incorporates various medical evaluations as the final component, providing high interpretability in medical analysis.
arXiv Detail & Related papers (2023-08-17T10:49:48Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Biomarker Gene Identification for Breast Cancer Classification [2.403531305046943]
The present work uses interpretable predictions made by the deep neural network employed for subtype classification to identify biomarkers.
The proposed algorithm led to the discovery of a set of 43 differentially expressed gene signatures.
arXiv Detail & Related papers (2021-11-10T06:38:50Z) - DeepGene Transformer: Transformer for the gene expression-based classification of cancer subtypes [5.179504118679301]
Cancer and its subtypes constitute approximately 30% of all causes of death globally.
DeepGene Transformer is proposed which addresses the complexity of high-dimensional gene expression with a multi-head self-attention module.
arXiv Detail & Related papers (2021-08-26T15:02:55Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
We introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers.
Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm.
Our signature reports promising results on distinguishing immune inflammatory and immune desert tumors.
arXiv Detail & Related papers (2021-02-11T09:04:45Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Multi-Phase Cross-modal Learning for Noninvasive Gene Mutation
Prediction in Hepatocellular Carcinoma [7.621860963237023]
We propose an end-to-end deep learning framework for mutation prediction in APOB, COL11A1 and ATRX genes using multiphasic CT scans.
arXiv Detail & Related papers (2020-05-08T14:36:59Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.