論文の概要: Comprehensive Survey on Adversarial Examples in Cybersecurity: Impacts, Challenges, and Mitigation Strategies
- arxiv url: http://arxiv.org/abs/2412.12217v1
- Date: Mon, 16 Dec 2024 01:54:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:59:50.270845
- Title: Comprehensive Survey on Adversarial Examples in Cybersecurity: Impacts, Challenges, and Mitigation Strategies
- Title(参考訳): サイバーセキュリティの逆転事例に関する包括的調査:影響、課題、緩和戦略
- Authors: Li Li,
- Abstract要約: 広告敵例(AE)は、ディープラーニングベースのシステムの堅牢性と信頼性に重要な課題を提起する。
本稿では,主要なサイバーセキュリティアプリケーションに対するAE攻撃の影響を概観する。
我々は,近年の防御機構の進歩を探求し,グラデーションマスキング,対人訓練,検出技術について検討した。
- 参考スコア(独自算出の注目度): 4.606106768645647
- License:
- Abstract: Deep learning (DL) has significantly transformed cybersecurity, enabling advancements in malware detection, botnet identification, intrusion detection, user authentication, and encrypted traffic analysis. However, the rise of adversarial examples (AE) poses a critical challenge to the robustness and reliability of DL-based systems. These subtle, crafted perturbations can deceive models, leading to severe consequences like misclassification and system vulnerabilities. This paper provides a comprehensive review of the impact of AE attacks on key cybersecurity applications, highlighting both their theoretical and practical implications. We systematically examine the methods used to generate adversarial examples, their specific effects across various domains, and the inherent trade-offs attackers face between efficacy and resource efficiency. Additionally, we explore recent advancements in defense mechanisms, including gradient masking, adversarial training, and detection techniques, evaluating their potential to enhance model resilience. By summarizing cutting-edge research, this study aims to bridge the gap between adversarial research and practical security applications, offering insights to fortify the adoption of DL solutions in cybersecurity.
- Abstract(参考訳): ディープラーニング(DL)は、サイバーセキュリティを大きく変革し、マルウェア検出、ボットネット識別、侵入検出、ユーザ認証、暗号化されたトラフィック分析の進歩を可能にした。
しかし、逆例(AE)の台頭は、DLベースのシステムの堅牢性と信頼性に重大な課題をもたらす。
これらの微妙で巧妙な摂動はモデルを騙し、誤分類やシステムの脆弱性といった深刻な結果をもたらす。
本稿では,AE攻撃が主要なサイバーセキュリティアプリケーションに与える影響を概観し,その理論的および実践的影響を概観する。
本研究では, 敵の事例を生成する方法, 様々な領域にまたがる特定の効果, 攻撃者が直面する本質的なトレードオフについて, 有効性と資源効率の両立を系統的に検討する。
さらに, 勾配マスキング, 対向訓練, 検出技術などの防衛機構の最近の進歩について検討し, モデルレジリエンスを高める可能性について検討した。
本研究は,最先端の研究を要約することにより,敵研究と現実的なセキュリティアプリケーションとのギャップを埋めることを目的として,サイバーセキュリティにおけるDLソリューションの採用を実証するための洞察を提供する。
関連論文リスト
- A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
敵対的攻撃、特にディープラーニングモデルの脆弱性を狙った攻撃は、サイバーセキュリティに対するニュアンスで重大な脅威となる。
本研究は,データポジショニング,テストタイムエベイション,リバースエンジニアリングなど,敵対的な学習の脅威について論じる。
我々の研究は、敵の攻撃によって引き起こされるネットワークセキュリティとプライバシの潜在的な侵害に対処するための防御メカニズムを強化するための基盤となる。
論文 参考訳(メタデータ) (2024-12-18T14:21:46Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
本稿では,機械学習を用いたネットワーク侵入検知システム(NIDS)の総合的なレビューを行う。
NIDSにおける既存の研究を批判的に検討し、重要なトレンド、強み、限界を強調した。
我々は、この分野における新たな課題について議論し、より堅牢でレジリエントなNIDSの開発に向けた洞察を提供する。
論文 参考訳(メタデータ) (2024-09-27T13:27:29Z) - CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
車両と外部ネットワークの統合が拡大し、コントロールエリアネットワーク(CAN)の内部バスをターゲットにした攻撃が急増した。
対策として,様々な侵入検知システム(IDS)が文献で提案されている。
これらのシステムのほとんどは、機械学習(ML)やディープラーニング(DL)モデルのような、データ駆動のアプローチに依存しています。
本稿では,CANベースのIDSをセキュアにするための新しいフレームワークであるCANEDERLIを提案する。
論文 参考訳(メタデータ) (2024-04-06T14:54:11Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Holistic Adversarial Robustness of Deep Learning Models [91.34155889052786]
敵対的堅牢性は、安全性と信頼性を確保するために、機械学習モデルの最悪のケースパフォーマンスを研究する。
本稿では,深層学習モデルの対角的ロバスト性に関する研究課題の概要と研究手法の基礎原則について概説する。
論文 参考訳(メタデータ) (2022-02-15T05:30:27Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
ディープラーニングモデルは、誤った分類決定を行うためにモデルを誤解させる可能性のあるデータインスタンスに対して脆弱であることがわかった。
本調査では,ネットワーク侵入検出分野における敵機械学習のさまざまな側面を利用した研究について検討する。
論文 参考訳(メタデータ) (2021-12-06T19:10:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。