Brickwall One-Loop Determinant: Spectral Statistics & Krylov Complexity
- URL: http://arxiv.org/abs/2412.12301v2
- Date: Mon, 03 Feb 2025 13:22:21 GMT
- Title: Brickwall One-Loop Determinant: Spectral Statistics & Krylov Complexity
- Authors: Hyun-Sik Jeong, Arnab Kundu, Juan F. Pedraza,
- Abstract summary: We show that the brickwall model exhibits features consistent with random matrix theory across various ensembles.
We also identify signatures of integrability at extreme values of the Dirichlet boundary condition parameter.
- Score: 0.0
- License:
- Abstract: We investigate quantum chaotic features of the brickwall model, which is obtained by introducing a stretched horizon -- a Dirichlet wall placed outside the event horizon -- within the BTZ geometry. This simple yet effective model has been shown to capture key properties of quantum black holes and is motivated by the stringy fuzzball proposal. We analyze the dynamics of both scalar and fermionic probe fields, deriving their normal mode spectra with Gaussian-distributed boundary conditions on the stretched horizon. By interpreting these normal modes as energy eigenvalues, we examine spectral statistics, including level spacing distributions, the spectral form factor, and Krylov state complexity as diagnostics for quantum chaos. Our results show that the brickwall model exhibits features consistent with random matrix theory across various ensembles as the standard deviation of the Gaussian distribution is varied. Specifically, we observe Wigner-Dyson distributions, a linear ramp in the spectral form factor, and a characteristic peak in Krylov complexity, all without the need for a classical interior geometry. We also demonstrate that non-vanishing spectral rigidity alone is sufficient to produce a peak in Krylov complexity, without requiring Wigner-Dyson level repulsion. Finally, we identify signatures of integrability at extreme values of the Dirichlet boundary condition parameter.
Related papers
- Unveiling Non-Hermitian Spectral Topology in Hyperbolic Lattices with Non-Abelian Translation Symmetry [5.889732092453942]
We develop an approach to determining the spectra under open boundary conditions (OBCs) from the reciprocal space of hyperbolic lattices (HBLs)
By introducing supercells to encompass states that are allowed by non-Abelian translational groups, we perform analytic continuation and base on the point gap topology to acquire uniform spectra.
Applying this method to a single-band nonreciprocal model and a reciprocal non-Abelian semimetal model, we reveal higher-dimensional skin effects and topological phase transitions.
arXiv Detail & Related papers (2024-12-07T10:33:53Z) - Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos [44.99833362998488]
We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
arXiv Detail & Related papers (2024-10-21T10:56:49Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Transition to chaos in extended systems and their quantum impurity
models [0.0]
Chaos sets a fundamental limit to quantum-information processing schemes.
We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices.
arXiv Detail & Related papers (2022-05-02T18:01:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Signatures of Chaos in Non-integrable Models of Quantum Field Theory [0.0]
We study signatures of quantum chaos in (1+1)D Quantum Field Theory (QFT) models.
We focus on the double sine-Gordon, also studying the massive sine-Gordon and $phi4$ model.
arXiv Detail & Related papers (2020-12-15T18:56:20Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Isospectral twirling and quantum chaos [0.0]
We show that the most important measures of quantum chaos like frame potentials, scrambling, Loschmidt echo, and out-of-time correlators (OTOCs) can be described by the unified framework of the isospectral twirling.
We show that, by exploiting random matrix theory, these measures of quantum chaos clearly distinguish the finite time profiles of probes to quantum chaos.
arXiv Detail & Related papers (2020-11-11T19:01:08Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.