Transition to chaos in extended systems and their quantum impurity
models
- URL: http://arxiv.org/abs/2205.01130v2
- Date: Thu, 30 Nov 2023 14:38:47 GMT
- Title: Transition to chaos in extended systems and their quantum impurity
models
- Authors: Mahaveer Prasad, Hari Kumar Yadalam, Manas Kulkarni, Camille Aron
- Abstract summary: Chaos sets a fundamental limit to quantum-information processing schemes.
We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chaos sets a fundamental limit to quantum-information processing schemes. We
study the onset of chaos in spatially extended quantum many-body systems that
are relevant to quantum optical devices. We consider an extended version of the
Tavis-Cummings model on a finite chain. By studying level-spacing statistics,
adjacent gap ratios, and spectral form factors, we observe the transition from
integrability to chaos as the hopping between the Tavis-Cummings sites is
increased above a finite value. The results are obtained by means of exact
numerical diagonalization which becomes notoriously hard for extended lattice
geometries. In an attempt to circumvent these difficulties, we identify a
minimal single-site quantum impurity model that successfully captures the
spectral properties of the lattice model. This approach is intended to be
adaptable to other lattice models with large local Hilbert spaces.
Related papers
- Entanglement growth from squeezing on the MPS manifold [0.06526824510982798]
We show a previously analytically connection between the Lyapunov spectrum from projection onto the matrix product state (MPS) manifold and the growth of entanglement.
Our results rigorously establish the physical significance of the projected Lyapunov spectrum, suggesting it as an alternative method of characterizing chaos in quantum many-body systems.
arXiv Detail & Related papers (2024-01-24T19:00:04Z) - Boundary Chaos: Spectral Form Factor [0.0]
Random matrix spectral correlations are a defining feature of quantum chaos.
We study such correlations in a minimal model of chaotic many-body quantum dynamics.
We find they coincide with random matrix theory, possibly after a non-zero Thouless time.
arXiv Detail & Related papers (2023-12-14T11:28:43Z) - Probing Confinement Through Dynamical Quantum Phase Transitions: From
Quantum Spin Models to Lattice Gauge Theories [0.0]
We show that a change in the type of dynamical quantum phase transitions accompanies the confinement-deconfinement transition.
Our conclusions can be tested in modern quantum-simulation platforms, such as ion-trap setups and cold-atom experiments of gauge theories.
arXiv Detail & Related papers (2023-10-18T18:00:04Z) - Cubic* criticality emerging from a quantum loop model on triangular lattice [5.252398154171938]
We show that the triangular lattice quantum loop model (QLM) hosts a rich ground state phase diagram with nematic, vison plaquette (VP) crystals, and the $mathbb$ quantum spin liquid (QSL) close to the Rokhsar-Kivelson quantum critical point.
These solutions are of immediate relevance to both statistical and quantum field theories, as well as the rapidly growing experiments in Rydberg atom arrays and quantum moir'e materials.
arXiv Detail & Related papers (2023-09-11T18:00:05Z) - Exact solution of the infinite-range dissipative transverse-field Ising
model [0.0]
We present an exact solution for the steady state of the transverse-field Ising model in the limit of infinite-range interactions.
Our solution holds despite the lack of any collective spin symmetry or even permutation symmetry.
It allows us to investigate first- and second-order dissipative phase transitions, driven-dissipative criticality, and captures the emergence of a surprising "spin blockade" phenomenon.
arXiv Detail & Related papers (2023-07-13T17:59:23Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.