論文の概要: Domain Generalization in Autonomous Driving: Evaluating YOLOv8s, RT-DETR, and YOLO-NAS with the ROAD-Almaty Dataset
- arxiv url: http://arxiv.org/abs/2412.12349v1
- Date: Mon, 16 Dec 2024 20:42:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:58:58.032221
- Title: Domain Generalization in Autonomous Driving: Evaluating YOLOv8s, RT-DETR, and YOLO-NAS with the ROAD-Almaty Dataset
- Title(参考訳): 自律運転におけるドメインの一般化:ROAD-Almatyデータセットを用いたYOLOv8s, RT-DETR, YOLO-NASの評価
- Authors: Madiyar Alimov, Temirlan Meiramkhanov,
- Abstract要約: 本研究では,カザフスタンのユニークな運転環境における3つの最先端物体検出モデル(YOLOv8s, RT-DETR, YOLO-NAS)の領域一般化能力について検討した。
モデルの性能を再トレーニングせずに評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study investigates the domain generalization capabilities of three state-of-the-art object detection models - YOLOv8s, RT-DETR, and YOLO-NAS - within the unique driving environment of Kazakhstan. Utilizing the newly constructed ROAD-Almaty dataset, which encompasses diverse weather, lighting, and traffic conditions, we evaluated the models' performance without any retraining. Quantitative analysis revealed that RT-DETR achieved an average F1-score of 0.672 at IoU=0.5, outperforming YOLOv8s (0.458) and YOLO-NAS (0.526) by approximately 46% and 27%, respectively. Additionally, all models exhibited significant performance declines at higher IoU thresholds (e.g., a drop of approximately 20% when increasing IoU from 0.5 to 0.75) and under challenging environmental conditions, such as heavy snowfall and low-light scenarios. These findings underscore the necessity for geographically diverse training datasets and the implementation of specialized domain adaptation techniques to enhance the reliability of autonomous vehicle detection systems globally. This research contributes to the understanding of domain generalization challenges in autonomous driving, particularly in underrepresented regions.
- Abstract(参考訳): 本研究では,カザフスタンのユニークな運転環境における3つの最先端物体検出モデル(YOLOv8s, RT-DETR, YOLO-NAS)の領域一般化能力について検討した。
気象,照明,交通条件を考慮したROAD-Almatyデータセットを新たに構築し,モデルの性能評価を行った。
定量分析の結果, RT-DETRは平均F1スコア0.672をIoU=0.5で達成し, YOLOv8s (0.458), YOLO-NAS (0.526) を約46%, 27%上回った。
さらに, 降雪や低照度シナリオなどの環境条件下でのIoU値の上昇(例:0.5から0.75までのIoU値上昇時の約20%低下)や, 環境条件下でのIoU値の低下が顕著であった。
これらの知見は、地理的に多様な訓練データセットの必要性と、世界規模の自律走行車検知システムの信頼性を高めるための専門分野適応技術の実装を浮き彫りにした。
本研究は, 自律運転における領域一般化の課題, 特に未表現領域における理解に寄与する。
関連論文リスト
- Assessing the Capability of YOLO- and Transformer-based Object Detectors for Real-time Weed Detection [0.0]
YOLOv8, YOLOv9, YOLOv10, RT-DETRのすべての利用可能なモデルは、実地状況の画像を用いて訓練され、評価される。
その結果、評価された指標では、全てのモデルが等しくよく機能するのに対し、YOLOv9モデルは強いリコールスコアの点で際立っていることがわかった。
RT-DETRモデル、特にRT-DETR-lは、データセット1では82.44 %、データセット2では81.46 %の精度で優れている。
論文 参考訳(メタデータ) (2025-01-29T02:39:57Z) - YOLO-Vehicle-Pro: A Cloud-Edge Collaborative Framework for Object Detection in Autonomous Driving under Adverse Weather Conditions [8.820126303110545]
本稿では, YOLO-VehicleとYOLO-Vehicle-Proの2つの革新的なディープラーニングモデルを提案する。
YOLO-Vehicleは、自動運転シナリオに特化したオブジェクト検出モデルである。
YOLO-Vehicle-Proはこの基盤の上に構築されており、改良されたイメージデハージングアルゴリズムを導入している。
論文 参考訳(メタデータ) (2024-10-23T10:07:13Z) - Fall Detection for Industrial Setups Using YOLOv8 Variants [0.0]
25.9百万のパラメータと79.1のGFLOPからなるYOLOv8mモデルでは、計算効率と検出性能のバランスが良好であった。
YOLOv8l と YOLOv8x モデルでは精度とリコールが向上したが、その高い計算要求とモデルサイズによりリソース制約のある環境には適さない。
論文 参考訳(メタデータ) (2024-08-08T17:24:54Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - Bangladeshi Native Vehicle Detection in Wild [1.444899524297657]
本稿ではバングラデシュで最もよく見られる車両のネイティブな車両検出データセットを提案する。
17の異なる車両クラスが考慮され、17326の画像の81542の完全な注釈が付けられている。
実験の結果,BNVDデータセットが車両分布の信頼性を示すことがわかった。
論文 参考訳(メタデータ) (2024-05-20T16:23:40Z) - DriveWorld: 4D Pre-trained Scene Understanding via World Models for Autonomous Driving [67.46481099962088]
現在の視覚中心の事前訓練は、通常、2Dまたは3Dのプリテキストタスクに依存し、自律運転の時間的特性を4Dシーン理解タスクとして見落としている。
我々は,マルチカメラ駆動ビデオからテンポラリな方法で事前学習が可能なEmphcentricDriveWorldを紹介した。
DriveWorldは、さまざまな自動運転タスクに関する有望な結果を提供する。
論文 参考訳(メタデータ) (2024-05-07T15:14:20Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Performance Analysis of YOLO-based Architectures for Vehicle Detection
from Traffic Images in Bangladesh [0.0]
バングラデシュの交通画像から高速かつ正確な車両検出を行うのに最適なYOLOアーキテクチャを見つける。
モデルは、21種類の車両に属する7390の画像を含むデータセットで訓練された。
YOLOV5xは, YOLOv3モデルとYOLOv5sモデルよりそれぞれ7~4%, 精度は12~8.5%向上した。
論文 参考訳(メタデータ) (2022-12-18T18:53:35Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Workshop on Autonomous Driving at CVPR 2021: Technical Report for
Streaming Perception Challenge [57.647371468876116]
本稿では,現実的な自律運転シナリオのためのリアルタイム2次元物体検出システムについて紹介する。
私たちの検出器は、YOLOXと呼ばれる新しい設計のYOLOモデルで構築されています。
Argoverse-HDデータセットでは,検出のみのトラック/トラックで2位を7.8/6.1上回る41.0ストリーミングAPを達成した。
論文 参考訳(メタデータ) (2021-07-27T06:36:06Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。