論文の概要: Pattern Analogies: Learning to Perform Programmatic Image Edits by Analogy
- arxiv url: http://arxiv.org/abs/2412.12463v1
- Date: Tue, 17 Dec 2024 01:52:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:00:12.372740
- Title: Pattern Analogies: Learning to Perform Programmatic Image Edits by Analogy
- Title(参考訳): パターンアナロジ: アナロジーによるプログラム画像編集の学習
- Authors: Aditya Ganeshan, Thibault Groueix, Paul Guerrero, Radomír Měch, Matthew Fisher, Daniel Ritchie,
- Abstract要約: 本稿では,パターン画像のプログラム編集を行う新しい手法を提案する。
パターンアナロジー(意図された編集を示すための単純なパターンのペア)と、これらの編集を実行するための学習ベースの生成モデルを使用することで、ユーザは直感的にパターンを編集できる。
- 参考スコア(独自算出の注目度): 30.223928085139573
- License:
- Abstract: Pattern images are everywhere in the digital and physical worlds, and tools to edit them are valuable. But editing pattern images is tricky: desired edits are often programmatic: structure-aware edits that alter the underlying program which generates the pattern. One could attempt to infer this underlying program, but current methods for doing so struggle with complex images and produce unorganized programs that make editing tedious. In this work, we introduce a novel approach to perform programmatic edits on pattern images. By using a pattern analogy -- a pair of simple patterns to demonstrate the intended edit -- and a learning-based generative model to execute these edits, our method allows users to intuitively edit patterns. To enable this paradigm, we introduce SplitWeave, a domain-specific language that, combined with a framework for sampling synthetic pattern analogies, enables the creation of a large, high-quality synthetic training dataset. We also present TriFuser, a Latent Diffusion Model (LDM) designed to overcome critical issues that arise when naively deploying LDMs to this task. Extensive experiments on real-world, artist-sourced patterns reveals that our method faithfully performs the demonstrated edit while also generalizing to related pattern styles beyond its training distribution.
- Abstract(参考訳): パターン画像はデジタルや物理的な世界の至る所にあり、それらを編集するためのツールも価値がある。
しかし、パターン画像の編集はトリッキーで、所望の編集は多くの場合プログラムで行われます。
この基礎となるプログラムを推測しようとしても、現在の方法では複雑な画像に苦労し、編集が面倒な未編成のプログラムを作成します。
本研究では,パターン画像のプログラム編集を行う新しい手法を提案する。
パターンアナロジー(意図された編集を示すための単純なパターンのペア)と、これらの編集を実行するための学習ベースの生成モデルを使用することで、ユーザは直感的にパターンを編集できる。
このパラダイムを実現するために、私たちはSplitWeaveというドメイン固有言語を導入しました。これは、合成パターンのアナロジーをサンプリングするフレームワークと組み合わせることで、大規模で高品質な合成トレーニングデータセットの作成を可能にします。
また,このタスクに LDM をネーティブにデプロイする場合に発生する重大な問題を克服するために設計された,潜在拡散モデル(LDM)である TriFuser も提案する。
実世界のアーティスト・ソース・パターンに関する大規模な実験により,本手法は実演編集を忠実に行うとともに,学習分布を超えて関連するパターンスタイルを一般化することを示した。
関連論文リスト
- Stable Flow: Vital Layers for Training-Free Image Editing [74.52248787189302]
拡散モデルはコンテンツ合成と編集の分野に革命をもたらした。
最近のモデルでは、従来のUNetアーキテクチャをDiffusion Transformer (DiT)に置き換えている。
画像形成に欠かせないDiT内の「硝子層」を自動同定する手法を提案する。
次に、実画像編集を可能にするために、フローモデルのための改良された画像反転手法を提案する。
論文 参考訳(メタデータ) (2024-11-21T18:59:51Z) - A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models [117.77807994397784]
画像編集は、ユーザーが特定の要求を満たすために、与えられた合成画像または実際の画像を編集することを目的としている。
この分野での最近の顕著な進歩は、テキスト・ツー・イメージ(T2I)拡散モデルの開発に基づいている。
T2Iベースの画像編集手法は、編集性能を大幅に向上させ、マルチモーダル入力でガイドされたコンテンツを修正するためのユーザフレンドリーなインタフェースを提供する。
論文 参考訳(メタデータ) (2024-06-20T17:58:52Z) - Diffusion Model-Based Image Editing: A Survey [46.244266782108234]
様々な画像生成や編集作業のための強力なツールとして,拡散モデルが登場している。
本稿では,画像編集のための拡散モデルを用いた既存手法の概要について述べる。
テキスト誘導画像編集アルゴリズムの性能を更に評価するために,系統的なベンチマークであるEditEvalを提案する。
論文 参考訳(メタデータ) (2024-02-27T14:07:09Z) - VASE: Object-Centric Appearance and Shape Manipulation of Real Videos [108.60416277357712]
本研究では,オブジェクトの外観と,特にオブジェクトの精密かつ明示的な構造的変更を実行するために設計された,オブジェクト中心のフレームワークを紹介する。
我々は,事前学習した画像条件拡散モデル上にフレームワークを構築し,時間次元を扱うためのレイヤを統合するとともに,形状制御を実現するためのトレーニング戦略とアーキテクチャ修正を提案する。
我々は,画像駆動映像編集タスクにおいて,最先端技術に類似した性能を示し,新しい形状編集機能を示す手法について検討した。
論文 参考訳(メタデータ) (2024-01-04T18:59:24Z) - Text-Driven Image Editing via Learnable Regions [74.45313434129005]
本研究では,ユーザが提供するマスクやスケッチを必要とせずに,テキストプロンプトによって駆動される領域ベースの画像編集手法を提案する。
この単純なアプローチにより、現在の画像生成モデルと互換性のあるフレキシブルな編集が可能になることを示す。
実験では,提案した言語記述に対応する忠実度とリアリズムの高い画像の操作において,提案手法の競合性能を示す。
論文 参考訳(メタデータ) (2023-11-28T02:27:31Z) - FICE: Text-Conditioned Fashion Image Editing With Guided GAN Inversion [16.583537785874604]
本研究では,多種多様なテキスト記述を扱える新しいテキスト条件編集モデルFICEを提案する。
FICEは、非常にリアルなファッションイメージを生成し、既存の競合するアプローチよりも強力な編集性能をもたらす。
論文 参考訳(メタデータ) (2023-01-05T15:33:23Z) - UniTune: Text-Driven Image Editing by Fine Tuning a Diffusion Model on a
Single Image [2.999198565272416]
我々は,画像生成モデルを単一画像上で微調整することで,画像編集モデルに変換できることを観察する。
我々は、任意の画像とテキストによる編集記述を入力として取得し、入力画像への忠実度を維持しながら編集を行う、新しい画像編集方法UniTuneを提案する。
従来不可能であった視覚的変化を必要とするものを含む,驚くほど広い範囲の表現的編集操作を行うことが可能であることを実証した。
論文 参考訳(メタデータ) (2022-10-17T23:46:05Z) - End-to-End Visual Editing with a Generatively Pre-Trained Artist [78.5922562526874]
対象画像編集の問題として、ソース画像内の領域と、所望の変更を指定したドライバ画像とをブレンドすることを考える。
対象領域のオフザシェルフ画像を拡大することにより編集をシミュレートする自己教師型アプローチを提案する。
我々は、モデルアーキテクチャに他の変更を加えることなく、拡張プロセスの直感的な制御によって異なるブレンディング効果が学習できることを示します。
論文 参考訳(メタデータ) (2022-05-03T17:59:30Z) - SpaceEdit: Learning a Unified Editing Space for Open-Domain Image
Editing [94.31103255204933]
オープンドメイン画像の色やトーン調整に着目したオープンドメイン画像編集のための統一モデルを提案する。
我々のモデルは、よりセマンティックで直感的で操作が容易な統合編集空間を学習する。
画像ペアを学習した編集空間の潜在コードに変換することで、下流編集タスクに我々のモデルを活用できることが示される。
論文 参考訳(メタデータ) (2021-11-30T23:53:32Z) - Delta-GAN-Encoder: Encoding Semantic Changes for Explicit Image Editing,
using Few Synthetic Samples [2.348633570886661]
本稿では,事前学習したGANの潜伏空間において,任意の属性を制御できる新しい手法を提案する。
我々は最小限のサンプルを頼りにSim2Real学習を行い、連続的な正確な編集を無制限に行う。
論文 参考訳(メタデータ) (2021-11-16T12:42:04Z) - A Structural Model for Contextual Code Changes [20.185486717922615]
部分的に編集されたコードスニペットが与えられた場合、私たちのゴールは、スニペットの残りの部分に対する編集の完了を予測することです。
提案モデルでは,最先端のシーケンシャルモデルよりも28%,編集コードの生成を学習する構文モデルよりも2倍高い精度を実現している。
論文 参考訳(メタデータ) (2020-05-27T07:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。