論文の概要: LinguaLIFT: An Effective Two-stage Instruction Tuning Framework for Low-Resource Language Tasks
- arxiv url: http://arxiv.org/abs/2412.12499v1
- Date: Tue, 17 Dec 2024 03:03:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:01:51.534923
- Title: LinguaLIFT: An Effective Two-stage Instruction Tuning Framework for Low-Resource Language Tasks
- Title(参考訳): LinguaLIFT: 低リソース言語タスクのための効果的な2段階命令チューニングフレームワーク
- Authors: Hongbin Zhang, Kehai Chen, Xuefeng Bai, Yang Xiang, Min Zhang,
- Abstract要約: 低リソース言語タスクを進行させるための2段階の命令チューニングフレームワークを提案する。
追加の言語アライメント層がLLMに統合され、事前訓練された多言語エンコーダが適応される。
第2ステージは、言語アライメント層を凍結しながら、英語のみの命令データを持つ微調整LDMである。
- 参考スコア(独自算出の注目度): 28.288949710191158
- License:
- Abstract: Large language models (LLMs) have demonstrated impressive multilingual understanding and reasoning capabilities, driven by extensive pre-training multilingual corpora and fine-tuning instruction data. However, a performance gap persists between high-resource and low-resource language tasks due to language imbalance in the pre-training corpus, even using more low-resource data during fine-tuning. To alleviate this issue, we propose LinguaLIFT, a two-stage instruction tuning framework for advancing low-resource language tasks. An additional language alignment layer is first integrated into the LLM to adapt a pre-trained multilingual encoder, thereby enhancing multilingual alignment through code-switched fine-tuning. The second stage fine-tunes LLM with English-only instruction data while freezing the language alignment layer, allowing LLM to transfer task-specific capabilities from English to low-resource language tasks. Additionally, we introduce the Multilingual Math World Problem (MMWP) benchmark, which spans 21 low-resource, 17 medium-resource, and 10 high-resource languages, enabling comprehensive evaluation of multilingual reasoning. Experimental results show that LinguaLIFT outperforms several competitive baselines across MMWP and other widely used benchmarks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、広範囲な事前学習型多言語コーパスと微調整型命令データによって駆動される、印象的な多言語理解と推論能力を示している。
しかし、事前学習コーパスにおける言語不均衡による高リソースと低リソースの言語タスク間のパフォーマンスギャップは、微調整時により低リソースのデータを使用することでさえ持続する。
この問題を軽減するために,低リソース言語タスクを進行させるための2段階のインストラクションチューニングフレームワークであるLinguaLIFTを提案する。
追加の言語アライメント層をLSMに統合して、事前訓練された多言語エンコーダを適応させ、コードスイッチによる微調整により多言語アライメントを向上させる。
第2段階は、言語アライメント層を凍結しながら、英語のみの命令データを持つ微調整 LLM であり、LLM はタスク固有の機能を英語から低リソースの言語タスクに転送することができる。
さらに、21個の低リソース、17個の中リソース、10個の高リソース言語にまたがるMMWP(Multilingual Math World Problem)ベンチマークを導入し、多言語推論の包括的な評価を可能にした。
実験結果から,LinguaLIFTはMMWPや他の広く使用されているベンチマークにおいて,いくつかの競争基準よりも優れていた。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - mCoT: Multilingual Instruction Tuning for Reasoning Consistency in Language Models [21.616940026409818]
大規模言語モデル(LLM)とChain-of-Thought(CoT)は、最近、下流タスクを改善するために推論を誘発する強力なテクニックとして登場した。
オープンソース LLM を用いて,多言語間の多言語推論の整合性について検討する。
言語間の推論能力を向上させるため,多言語CoT命令チューニングを導入し,モデルの整合性を向上させる。
論文 参考訳(メタデータ) (2024-06-04T13:30:45Z) - Investigating Multilingual Instruction-Tuning: Do Polyglot Models Demand for Multilingual Instructions? [42.37657013017192]
単言語コーパスの代わりに並列で命令チューニングを行うことで、最大9.9%の言語間命令に従うことができることを示す。
また,多言語チャットシナリオにおけるヒューマンベースとGPT-4に基づく評価の整合性を理解するために,人間のアノテーション研究を行う。
論文 参考訳(メタデータ) (2024-02-21T11:07:07Z) - xCoT: Cross-lingual Instruction Tuning for Cross-lingual
Chain-of-Thought Reasoning [36.34986831526529]
CoT(Chain-of-Thought)は、大規模言語モデルにおける推論を誘発する強力なテクニックとして登場した。
本稿では,ハイソース言語から低リソース言語へ知識を伝達するための言語間命令微調整フレームワーク(xCOT)を提案する。
論文 参考訳(メタデータ) (2024-01-13T10:53:53Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
負の干渉を軽減するために,HLT-MT(High-Resource Language-specific Training)を用いた多言語翻訳モデルを提案する。
具体的には、まずマルチ言語モデルを高リソースペアでトレーニングし、デコーダの上部にある言語固有のモジュールを選択する。
HLT-MTは、高リソース言語から低リソース言語への知識伝達のために、利用可能なすべてのコーパスでさらに訓練されている。
論文 参考訳(メタデータ) (2022-07-11T14:33:13Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。