論文の概要: Generating Move Smart Contracts based on Concepts
- arxiv url: http://arxiv.org/abs/2412.12513v1
- Date: Tue, 17 Dec 2024 04:07:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:00:25.525215
- Title: Generating Move Smart Contracts based on Concepts
- Title(参考訳): 概念に基づく移動スマートコントラクトの生成
- Authors: Rabimba Karanjai, Sam Blackshear, Lei Xu, Weidong Shi,
- Abstract要約: ConMoverは、Move用の大規模言語モデル(LLM)ベースのコード生成を強化する新しいフレームワークである。
概念検索、計画、コーディング、デバッグエージェントを反復的なプロセスに統合し、生成されたコードを洗練する。
- 参考スコア(独自算出の注目度): 4.3764649156831235
- License:
- Abstract: The growing adoption of formal verification for smart contracts has spurred the development of new verifiable languages like Move. However, the limited availability of training data for these languages hinders effective code generation by large language models (LLMs). This paper presents ConMover, a novel framework that enhances LLM-based code generation for Move by leveraging a knowledge graph of Move concepts and a small set of verified code examples. ConMover integrates concept retrieval, planning, coding, and debugging agents in an iterative process to refine generated code. Evaluations with various open-source LLMs demonstrate substantial accuracy improvements over baseline models. These results underscore ConMover's potential to address low-resource code generation challenges, bridging the gap between natural language descriptions and reliable smart contract development.
- Abstract(参考訳): スマートコントラクトに対する形式的検証の採用が増加し、Moveのような新しい検証可能な言語の開発が加速した。
しかし、これらの言語のトレーニングデータが限られているため、大きな言語モデル(LLM)による効果的なコード生成が妨げられる。
本稿では,Move の概念の知識グラフと検証済みコード例の小さなセットを活用することで,LLM による Move のコード生成を促進する新しいフレームワーク ConMover を提案する。
ConMoverは、概念検索、計画、コーディング、デバッグエージェントを反復的なプロセスに統合し、生成されたコードを洗練する。
様々なオープンソースのLCMによる評価は、ベースラインモデルよりも大幅に精度が向上したことを示している。
これらの結果は、ConMoverが低リソースのコード生成問題に対処する可能性を強調し、自然言語記述と信頼できるスマートコントラクト開発の間のギャップを埋める。
関連論文リスト
- Guided Code Generation with LLMs: A Multi-Agent Framework for Complex Code Tasks [1.9198713957364215]
大規模言語モデル(LLM)は、コード生成タスクにおいて顕著な機能を示している。
複雑な、長いコンテキストプログラミングの課題に対処する上で、それらは重大な制限に直面します。
「案内コード生成のための新しいエージェント・フレームワーク」について紹介する。
論文 参考訳(メタデータ) (2025-01-11T19:21:53Z) - Chunk-Distilled Language Modeling [25.238256586953487]
Chunk-Distilled Language Modeling (CD-LM)は、現在の大規模言語モデル(LLM)における2つの課題に対処するテキスト生成のアプローチである。
提案手法は,ディープネットワークベースのLCMと簡単な検索モジュールを組み合わせることで,単一のデコードステップでマルチトークンテキストチャンクを生成する。
論文 参考訳(メタデータ) (2024-12-31T08:32:15Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保持するために追加情報を挿入する。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
本稿では,SeCoT というコードの意味情報を抽出する "Semantic Chain-of-Thought" 手法を提案する。
本研究では,SeCoTが最先端の性能を実現し,大規模モデルやコード生成の可能性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-16T05:09:58Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
大規模言語モデル(LLM)ベースのコード生成は複雑で強力なブラックボックスモデルである。
本稿では,プロンプトと生成されたコードの因果グラフに基づく新しい表現を提案する。
我々は,12以上の迅速な調整戦略で3つの人気のあるLCMを研究することで,我々のフレームワークが提供できる洞察について説明する。
論文 参考訳(メタデータ) (2023-10-10T14:56:26Z) - ContraCLM: Contrastive Learning For Causal Language Model [54.828635613501376]
トークンレベルとシーケンスレベルの両方において,新しいコントラスト学習フレームワークであるContraCLMを提案する。
ContraCLMは表現の識別を強化し、エンコーダのみのモデルとのギャップを埋めることを示す。
論文 参考訳(メタデータ) (2022-10-03T18:56:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。