Enhanced Momentum with Momentum Transformers
- URL: http://arxiv.org/abs/2412.12516v1
- Date: Tue, 17 Dec 2024 04:11:30 GMT
- Title: Enhanced Momentum with Momentum Transformers
- Authors: Max Mason, Waasi A Jagirdar, David Huang, Rahul Murugan,
- Abstract summary: We extend the ideas introduced in the paper Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture to equities.
Unlike conventional Long Short-Term Memory (LSTM) models, which operate sequentially and are optimized for processing local patterns, an attention mechanism equips our architecture with direct access to all prior time steps in the training window.
This hybrid design, combining attention with an LSTM, enables the model to capture long-term dependencies, enhance performance in scenarios accounting for transaction costs, and seamlessly adapt to evolving market conditions.
- Score: 0.46498278084317696
- License:
- Abstract: The primary objective of this research is to build a Momentum Transformer that is expected to outperform benchmark time-series momentum and mean-reversion trading strategies. We extend the ideas introduced in the paper Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture to equities as the original paper primarily only builds upon futures and equity indices. Unlike conventional Long Short-Term Memory (LSTM) models, which operate sequentially and are optimized for processing local patterns, an attention mechanism equips our architecture with direct access to all prior time steps in the training window. This hybrid design, combining attention with an LSTM, enables the model to capture long-term dependencies, enhance performance in scenarios accounting for transaction costs, and seamlessly adapt to evolving market conditions, such as those witnessed during the Covid Pandemic. We average 4.14% returns which is similar to the original papers results. Our Sharpe is lower at an average of 1.12 due to much higher volatility which may be due to stocks being inherently more volatile than futures and indices.
Related papers
- Advanced Risk Prediction and Stability Assessment of Banks Using Time Series Transformer Models [10.79035001851989]
This paper proposes a prediction framework based on the Time Series Transformer model.
We compare the model with LSTM, GRU, CNN, TCN and RNN-Transformer models.
The experimental results show that the Time Series Transformer model outperforms other models in both mean square error (MSE) and mean absolute error (MAE) evaluation indicators.
arXiv Detail & Related papers (2024-12-04T08:15:27Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Regime-based Implied Stochastic Volatility Model for Crypto Option
Pricing [0.0]
Existing methodologies fail to cope with the volatile nature of the emerging Digital Assets (DAs)
We leverage recent advances in market regime (MR) clustering with the Implied volatility Model (ISVM)
ISVM can incorporate investor expectations in each of the sentiment-driven periods by using implied volatility (IV) data.
We demonstrate that MR-ISVM contributes to overcome the burden of complex adaption to jumps in higher order characteristics of option pricing models.
arXiv Detail & Related papers (2022-08-15T15:31:42Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
We present an ensemble of independent and parallel long short-term memory neural networks for the prediction of stock price movement.
With a straightforward trading strategy, comparisons with a randomly chosen portfolio and a portfolio containing all the stocks in the index show that the portfolio resulting from the LSTM ensemble provides better average daily returns and higher cumulative returns over time.
arXiv Detail & Related papers (2022-01-20T15:17:26Z) - Trading with the Momentum Transformer: An Intelligent and Interpretable
Architecture [2.580765958706854]
We introduce the Momentum Transformer, an attention-based architecture which outperforms the benchmarks.
We observe remarkable structure in the attention patterns, with significant peaks of importance at momentum turning points.
Through the addition of an interpretable variable selection network, we observe how CPD helps our model to move away from trading predominantly on daily returns data.
arXiv Detail & Related papers (2021-12-16T00:04:12Z) - Multi-Transformer: A New Neural Network-Based Architecture for
Forecasting S&P Volatility [0.0]
This paper proposes more accurate stock volatility models based on machine and deep learning techniques.
This paper introduces a neural network-based architecture, called Multi-Transformer.
The paper also adapts traditional Transformer layers in order to be used in volatility forecasting models.
arXiv Detail & Related papers (2021-09-26T14:47:04Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.