Stiefel Flow Matching for Moment-Constrained Structure Elucidation
- URL: http://arxiv.org/abs/2412.12540v1
- Date: Tue, 17 Dec 2024 05:07:10 GMT
- Title: Stiefel Flow Matching for Moment-Constrained Structure Elucidation
- Authors: Austin Cheng, Alston Lo, Kin Long Kelvin Lee, Santiago Miret, Alán Aspuru-Guzik,
- Abstract summary: We consider the task of predicting a molecule's all-atom 3D structure given only its molecular formula and moments of inertia.
Existing generative models can conditionally sample 3D structures with approximately correct moments.
We propose Stiefel Flow Matching as a generative model for elucidating 3D structure under exact moment constraints.
- Score: 6.111688279277978
- License:
- Abstract: Molecular structure elucidation is a fundamental step in understanding chemical phenomena, with applications in identifying molecules in natural products, lab syntheses, forensic samples, and the interstellar medium. We consider the task of predicting a molecule's all-atom 3D structure given only its molecular formula and moments of inertia, motivated by the ability of rotational spectroscopy to measure these moments. While existing generative models can conditionally sample 3D structures with approximately correct moments, this soft conditioning fails to leverage the many digits of precision afforded by experimental rotational spectroscopy. To address this, we first show that the space of $n$-atom point clouds with a fixed set of moments of inertia is embedded in the Stiefel manifold $\mathrm{St}(n, 4)$. We then propose Stiefel Flow Matching as a generative model for elucidating 3D structure under exact moment constraints. Additionally, we learn simpler and shorter flows by finding approximate solutions for equivariant optimal transport on the Stiefel manifold. Empirically, enforcing exact moment constraints allows Stiefel Flow Matching to achieve higher success rates and faster sampling than Euclidean diffusion models, even on high-dimensional manifolds corresponding to large molecules in the GEOM dataset.
Related papers
- DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
DiffMS is a formula-restricted encoder-decoder generative network.
We develop a robust decoder that bridges latent embeddings and molecular structures.
Experiments show DiffMS outperforms existing models on $textitde novo$ molecule generation.
arXiv Detail & Related papers (2025-02-13T18:29:48Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Swallowing the Bitter Pill: Simplified Scalable Conformer Generation [12.341835649897886]
We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the equis of prior works and achieves state of the art results by using the advantages of scale.
We are able to radically simplify structure learning, and make it trivial to scale up the model sizes.
This model, called Molecular Conformer Fields (MCF), works by parameterizing conformer structures as functions that map elements from a molecular graph directly to their 3D location in space.
arXiv Detail & Related papers (2023-11-27T22:53:41Z) - Reflection-Equivariant Diffusion for 3D Structure Determination from
Isotopologue Rotational Spectra in Natural Abundance [5.585345112578967]
We develop KREED, a generative diffusion model that infers a molecule's complete 3D structure from its molecular formula, moments of inertia, and unsigned substitution coordinates of heavy atoms.
KREED's top-1 predictions identify the correct 3D structure with >98% accuracy on the QM9 and GEOM datasets.
On a test set of experimentally measured substitution coordinates gathered from the literature, KREED predicts the correct all-atom 3D structure in 25 of 33 cases.
arXiv Detail & Related papers (2023-10-17T22:05:11Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
We propose a novel model called ScoreMD to estimate the gradient of the log density of molecular conformations.
With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10.
This research provides new insights into the acceleration of new material and drug discovery.
arXiv Detail & Related papers (2022-04-19T05:13:46Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Investigating 3D Atomic Environments for Enhanced QSAR [0.0]
Predicting bioactivity and physical properties of molecules is a longstanding challenge in drug design.
Most approaches use molecular descriptors based on a 2D representation of molecules as a graph of atoms and bonds, abstracting away the molecular shape.
We describe a novel alignment-free 3D QSAR method using Smooth Overlap of Atomic Positions (SOAP), a well-established formalism developed for interpolating potential energy surfaces.
arXiv Detail & Related papers (2020-10-24T10:04:48Z) - Predicting molecular dipole moments by combining atomic partial charges
and atomic dipoles [3.0980025155565376]
"MuML" models are fitted together to reproduce molecular $boldsymbolmu$ computed using high-level coupled-cluster theory.
We demonstrate that the uncertainty in the predictions can be estimated reliably using a calibrated committee model.
arXiv Detail & Related papers (2020-03-27T14:35:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.