論文の概要: Efficient Oriented Object Detection with Enhanced Small Object Recognition in Aerial Images
- arxiv url: http://arxiv.org/abs/2412.12562v1
- Date: Tue, 17 Dec 2024 05:45:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:58:53.443888
- Title: Efficient Oriented Object Detection with Enhanced Small Object Recognition in Aerial Images
- Title(参考訳): 航空画像における小型物体認識の高度化によるオブジェクト指向物体の高能率検出
- Authors: Zhifei Shi, Zongyao Yin, Sheng Chang, Xiao Yi, Xianchuan Yu,
- Abstract要約: 本稿では,オブジェクト指向物体検出タスクに適したYOLOv8モデルを新たに拡張する。
本モデルでは,ASFP(Adaptive Scale Feature Pyramid)モジュールと,P2層の詳細を利用したウェーブレット変換に基づくC2fモジュールを特徴とする。
我々のアプローチは233万のパラメータを持つDecoupleNetよりも効率的なアーキテクチャ設計を提供し、検出精度を維持しています。
- 参考スコア(独自算出の注目度): 2.9138705529771123
- License:
- Abstract: Achieving a balance between computational efficiency and detection accuracy in the realm of rotated bounding box object detection within aerial imagery is a significant challenge. While prior research has aimed at creating lightweight models that enhance computational performance and feature extraction, there remains a gap in the performance of these networks when it comes to the detection of small and multi-scale objects in remote sensing (RS) imagery. To address these challenges, we present a novel enhancement to the YOLOv8 model, tailored for oriented object detection tasks and optimized for environments with limited computational resources. Our model features a wavelet transform-based C2f module for capturing associative features and an Adaptive Scale Feature Pyramid (ASFP) module that leverages P2 layer details. Additionally, the incorporation of GhostDynamicConv significantly contributes to the model's lightweight nature, ensuring high efficiency in aerial imagery analysis. Featuring a parameter count of 21.6M, our approach provides a more efficient architectural design than DecoupleNet, which has 23.3M parameters, all while maintaining detection accuracy. On the DOTAv1.0 dataset, our model demonstrates a mean Average Precision (mAP) that is competitive with leading methods such as DecoupleNet. The model's efficiency, combined with its reduced parameter count, makes it a strong candidate for aerial object detection, particularly in resource-constrained environments.
- Abstract(参考訳): 空中画像における回転境界ボックス物体検出の領域における計算効率と検出精度のバランスを取ることは重要な課題である。
従来の研究では、計算性能と特徴抽出を向上する軽量なモデルの構築を目標としていたが、リモートセンシング(RS)画像における小型・マルチスケール物体の検出に関しては、これらのネットワークの性能に差がある。
これらの課題に対処するために,オブジェクト指向オブジェクト検出タスクに適したYOLOv8モデルを新たに拡張し,限られた計算資源を持つ環境に最適化する。
本モデルでは,ASFP(Adaptive Scale Feature Pyramid)モジュールと,P2層の詳細を利用したウェーブレット変換に基づくC2fモジュールを特徴とする。
さらに、GhostDynamicConvの組み入れは、そのモデルの軽量性に大きく貢献し、航空画像解析における高い効率性を保証する。
パラメータ数は21.6Mであり、検出精度を維持しながら23.3Mのパラメータを持つDecoupleNetよりも効率的なアーキテクチャ設計を提供する。
DOTAv1.0データセットでは、DecoupleNetのような主要な手法と競合する平均平均精度(mAP)を示す。
このモデルの効率性とパラメータの減少は、特に資源制約のある環境において、空中物体検出の強力な候補となる。
関連論文リスト
- Efficient Feature Fusion for UAV Object Detection [9.632727117779178]
特に小さな物体は画像のごく一部を占めており、正確な検出を困難にしている。
既存のマルチスケール機能融合手法は、様々な解像度で機能を集約することでこれらの課題に対処する。
本稿では,UAVオブジェクト検出タスクに特化して設計された新しい機能融合フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-29T20:39:16Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
エッジコンピューティングは、時間に敏感なシナリオでディープラーニングベースのオブジェクト検出をデプロイするための重要なパラダイムとして登場した。
既存のエッジ検出手法では、軽量モデルによる検出精度のバランスの難しさ、適応性の制限、現実の検証の不十分といった課題に直面している。
本稿では,汎用的なプラグイン・アンド・プレイコンポーネントを用いてエッジ環境にオブジェクト検出モデルを適用するエッジ検出ツールボックス(ED-TOOLBOX)を提案する。
論文 参考訳(メタデータ) (2024-12-24T07:28:10Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
空中画像における小さな物体検出は、コンピュータビジョンにおいて重要な課題である。
トランスフォーマーベースのモデルを用いた従来の手法は、特殊データベースの欠如に起因する制限に直面していることが多い。
本稿では,小型空中物体の検出とセグメンテーション機能を大幅に向上する2つの革新的なアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-02T19:47:08Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
本稿では,KD-RNetの知識蒸留による空中画像の回転物体検出のためのモデル圧縮手法を提案する。
大規模空中物体検出データセット(DOTA)による実験結果から,提案したKD-RNetモデルにより,パラメータ数を削減した平均値精度(mAP)が向上し,同時にKD-RNetは,基底アノテーションと高い重なり合う高品質検出を提供することで,性能を向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T14:24:16Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
小型物体検出のための新しいニューラルネットワークアーキテクチャであるSample-WeIghted hyPEr Network(SWIPENet)を提案する。
提案するSWIPENet+IMAフレームワークは,複数の最先端オブジェクト検出手法に対して,検出精度の向上を実現する。
論文 参考訳(メタデータ) (2020-05-23T15:30:38Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。