RemoteTrimmer: Adaptive Structural Pruning for Remote Sensing Image Classification
- URL: http://arxiv.org/abs/2412.12603v2
- Date: Thu, 19 Dec 2024 01:57:56 GMT
- Title: RemoteTrimmer: Adaptive Structural Pruning for Remote Sensing Image Classification
- Authors: Guangwenjie Zou, Liang Yao, Fan Liu, Chuanyi Zhang, Xin Li, Ning Chen, Shengxiang Xu, Jun Zhou,
- Abstract summary: We propose an effective structural pruning approach for remote sensing image classification.
Specifically, a pruning strategy that amplifies the differences in channel importance of the model is introduced.
An adaptive mining loss function is designed for the fine-tuning process of the pruned model.
- Score: 18.96319349055505
- License:
- Abstract: Since high resolution remote sensing image classification often requires a relatively high computation complexity, lightweight models tend to be practical and efficient. Model pruning is an effective method for model compression. However, existing methods rarely take into account the specificity of remote sensing images, resulting in significant accuracy loss after pruning. To this end, we propose an effective structural pruning approach for remote sensing image classification. Specifically, a pruning strategy that amplifies the differences in channel importance of the model is introduced. Then an adaptive mining loss function is designed for the fine-tuning process of the pruned model. Finally, we conducted experiments on two remote sensing classification datasets. The experimental results demonstrate that our method achieves minimal accuracy loss after compressing remote sensing classification models, achieving state-of-the-art (SoTA) performance.
Related papers
- Comb, Prune, Distill: Towards Unified Pruning for Vision Model Compression [24.119415458653616]
We propose a novel unified pruning framework Comb, Prune, Distill (CPD) to address both model-agnostic and task-agnostic concerns simultaneously.
Our framework employs a combing step to resolve hierarchical layer-wise dependency issues, enabling architecture independence.
In image classification we achieve a speedup of up to x4.3 with a accuracy loss of 1.8% and in semantic segmentation up to x1.89 with a 5.1% loss in mIoU.
arXiv Detail & Related papers (2024-08-06T09:02:31Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Multiscale Structure Guided Diffusion for Image Deblurring [24.09642909404091]
Diffusion Probabilistic Models (DPMs) have been employed for image deblurring.
We introduce a simple yet effective multiscale structure guidance as an implicit bias.
We demonstrate more robust deblurring results with fewer artifacts on unseen data.
arXiv Detail & Related papers (2022-12-04T10:40:35Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone.
We propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects.
arXiv Detail & Related papers (2022-06-20T16:34:11Z) - Towards Bidirectional Arbitrary Image Rescaling: Joint Optimization and
Cycle Idempotence [76.93002743194974]
We propose a method to treat arbitrary rescaling, both upscaling and downscaling, as one unified process.
The proposed model is able to learn upscaling and downscaling simultaneously and achieve bidirectional arbitrary image rescaling.
It is shown to be robust in cycle idempotence test, free of severe degradations in reconstruction accuracy when the downscaling-to-upscaling cycle is applied repetitively.
arXiv Detail & Related papers (2022-03-02T07:42:15Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Projected Distribution Loss for Image Enhancement [15.297569497776374]
We show that aggregating 1D-Wasserstein distances between CNN activations is more reliable than the existing approaches.
In imaging applications such as denoising, super-resolution, demosaicing, deblurring and JPEG artifact removal, the proposed learning loss outperforms the current state-of-the-art on reference-based perceptual losses.
arXiv Detail & Related papers (2020-12-16T22:13:03Z) - Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks [28.32775611169636]
We introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation.
A novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features.
Our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU)
arXiv Detail & Related papers (2020-08-10T11:00:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.