論文の概要: RDPI: A Refine Diffusion Probability Generation Method for Spatiotemporal Data Imputation
- arxiv url: http://arxiv.org/abs/2412.12642v1
- Date: Tue, 17 Dec 2024 08:06:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:00:58.188546
- Title: RDPI: A Refine Diffusion Probability Generation Method for Spatiotemporal Data Imputation
- Title(参考訳): RDPI:時空間データインプットのための微細拡散確率生成法
- Authors: Zijin Liu, Xiang Zhao, You Song,
- Abstract要約: インキュベーションは交通流のモニタリング、大気質の評価、気候予報など様々な分野で重要な役割を担っている。
センサによって収集されたデータは、しばしば時間的不完全性に悩まされ、蓄積と不均一な分布は、データ不足につながる。
本稿では,初期ネットワークと条件拡散モデルに基づく2段階改良型確率計算フレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.251739849724956
- License:
- Abstract: Spatiotemporal data imputation plays a crucial role in various fields such as traffic flow monitoring, air quality assessment, and climate prediction. However, spatiotemporal data collected by sensors often suffer from temporal incompleteness, and the sparse and uneven distribution of sensors leads to missing data in the spatial dimension. Among existing methods, autoregressive approaches are prone to error accumulation, while simple conditional diffusion models fail to adequately capture the spatiotemporal relationships between observed and missing data. To address these issues, we propose a novel two-stage Refined Diffusion Probability Impuation (RDPI) framework based on an initial network and a conditional diffusion model. In the initial stage, deterministic imputation methods are used to generate preliminary estimates of the missing data. In the refinement stage, residuals are treated as the diffusion target, and observed values are innovatively incorporated into the forward process. This results in a conditional diffusion model better suited for spatiotemporal data imputation, bridging the gap between the preliminary estimates and the true values. Experiments on multiple datasets demonstrate that RDPI not only achieves state-of-the-art imputation accuracy but also significantly reduces sampling computational costs.
- Abstract(参考訳): 時空間データ計算は,交通流モニタリング,大気質評価,気候予測など,様々な分野において重要な役割を担っている。
しかし、センサによって収集された時空間データはしばしば時間的不完全性に悩まされ、センサーのスパースと不均一な分布は空間次元におけるデータ不足につながる。
従来の手法では、自己回帰的手法はエラーの蓄積が難しく、単純な条件拡散モデルは観測データと欠落データの間の時空間的関係を適切に捉えることができない。
これらの問題に対処するために,初期ネットワークと条件付き拡散モデルに基づく新しい2段階の拡散拡散確率インピュレーション(RDPI)フレームワークを提案する。
初期段階では、欠落したデータの予備的な推定を生成するために決定論的計算法が用いられる。
精製段階では、残留物を拡散ターゲットとして処理し、観察された値を前方プロセスに革新的に組み込む。
その結果、時空間データ計算に適した条件拡散モデルが得られ、予備推定値と真の値とのギャップを埋める。
複数のデータセットの実験では、RDPIは最先端の計算精度を達成するだけでなく、サンプリング計算コストを大幅に削減することを示した。
関連論文リスト
- Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model [22.39558434131574]
拡散モデルに対する既存のデータ帰属法は、典型的にはトレーニングサンプルの寄与を定量化する。
拡散損失の直接的利用は,拡散損失の計算により,そのような貢献を正確に表すことはできない。
本研究の目的は, 予測分布と属性スコアとの直接比較を計測し, トレーニングサンプルの重要性を分析することである。
論文 参考訳(メタデータ) (2024-10-24T10:58:17Z) - Latent Space Score-based Diffusion Model for Probabilistic Multivariate Time Series Imputation [6.9295879301090535]
確率的時系列計算のための遅延空間スコアベース拡散モデル(LSSDM)を提案する。
LSSDMは、計算機構のより良い説明と不確実性解析を提供しながら、優れた計算性能を実現する。
論文 参考訳(メタデータ) (2024-09-13T15:32:26Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
C$2$TSDという条件拡散フレームワークを導入する。
実世界の3つのデータセットに対する我々の実験は、最先端のベースラインと比較して、我々のアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2024-02-18T11:59:04Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
我々はImDiffusionという新しい異常検出フレームワークを提案する。
ImDiffusionは時系列計算と拡散モデルを組み合わせて、正確で堅牢な異常検出を実現する。
我々はImDiffusionの性能をベンチマークデータセットの広範な実験により評価する。
論文 参考訳(メタデータ) (2023-07-03T04:57:40Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation [35.62945607302276]
本稿では,PriSTI という先行モデルを用いた時空間計算のための条件拡散フレームワークを提案する。
PriSTIは、さまざまな現実世界データの欠落パターンにおいて既存の計算方法よりも優れており、高い欠落率やセンサーの故障といったシナリオを効果的に処理する。
論文 参考訳(メタデータ) (2023-02-20T03:52:53Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。