論文の概要: LLM-based Discriminative Reasoning for Knowledge Graph Question Answering
- arxiv url: http://arxiv.org/abs/2412.12643v2
- Date: Fri, 07 Mar 2025 07:14:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 15:01:10.322465
- Title: LLM-based Discriminative Reasoning for Knowledge Graph Question Answering
- Title(参考訳): LLMに基づく知識グラフ質問応答のための識別的推論
- Authors: Mufan Xu, Kehai Chen, Xuefeng Bai, Muyun Yang, Tiejun Zhao, Min Zhang,
- Abstract要約: 生成事前学習型トランスフォーマーに基づく大規模言語モデル(LLM)は,知識グラフ質問応答(KGQA)タスクにおいて顕著な性能を発揮している。
しかし、LLMは、生成パラダイムによって引き起こされる幻覚的行動のために、KGQAにおいて、根拠のない部分グラフ計画や推論の結果をしばしば生み出す。
本稿では,KGQA過程を識別サブタスクに再構成するREADSを提案し,各サブタスクの検索空間を単純化する。
- 参考スコア(独自算出の注目度): 42.277864969014296
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering (KGQA) tasks. However, LLMs often produce ungrounded subgraph planning or reasoning results in KGQA due to the hallucinatory behavior brought by the generative paradigm. To tackle this issue, we propose READS to reformulate the KGQA process into discriminative subtasks, which simplifies the search space for each subtasks. Based on the subtasks, we design a new corresponding discriminative inference strategy to conduct the reasoning for KGQA, thereby alleviating hallucination and ungrounded reasoning issues in LLMs. Experimental results show that the proposed approach outperforms multiple strong comparison methods, along with achieving state-of-the-art performance on widely used benchmarks WebQSP and CWQ.
- Abstract(参考訳): 生成事前学習型トランスフォーマーに基づく大規模言語モデル(LLM)は,知識グラフ質問応答(KGQA)タスクにおいて顕著な性能を発揮している。
しかし、LLMは、生成パラダイムによって引き起こされる幻覚的行動のために、KGQAにおいて、根拠のない部分グラフ計画や推論の結果をしばしば生み出す。
そこで本研究では,KGQA処理を識別サブタスクに書き換えるREADSを提案し,各サブタスクの検索空間を単純化する。
サブタスクに基づいて,KGQAの推論を行うための新たな識別的推論戦略を設計し,LLMにおける幻覚や未解決の推論問題を緩和する。
実験結果から,提案手法はWebQSPとCWQの両ベンチマークにおける最先端性能とともに,複数の強力な比較手法よりも優れていることが示された。
関連論文リスト
- Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning [45.74704900487982]
大規模言語モデル (LLM) は知識グラフ質問応答タスクにおいて顕著な性能を達成している。
本稿では,LLM をツール実行タスクから切り離すために,LLM ベースの知識グラフ推論 (MemQ) のためのメモリ拡張クエリ再構成を提案する。
MemQは、広く使われているベンチマークであるWebQSPとCWQで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-07T07:28:32Z) - Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation [68.58373854950294]
我々は因果推論に焦点をあて,相関情報に基づく因果関係の確立という課題に対処する。
この問題に対して,元のタスクを固定的なサブクエストに分割するプロンプト戦略を導入する。
既存の因果ベンチマークであるCorr2Causeに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-12-18T15:32:27Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
最近の研究は、複数の推論チェーンをサンプリングし、応答周波数に基づいてアンサンブルすることで、Large Language Models(LLMs)の推論性能を向上させる。
このアプローチは、正しい答えが少数派である場合に失敗する。
階層的推論集約フレームワークAoRを導入し、推論連鎖の評価に基づいて回答を選択する。
論文 参考訳(メタデータ) (2024-05-21T17:12:19Z) - RankPrompt: Step-by-Step Comparisons Make Language Models Better Reasoners [38.30539869264287]
大きな言語モデル(LLM)は、様々な推論タスクで素晴らしいパフォーマンスを実現しています。
しかし、ChatGPTのような最先端のLCMでさえ、推論プロセス中に論理的な誤りを犯しやすい。
新たなプロンプト手法である RankPrompt を導入し,LLM が追加リソースを必要とせずに応答を自己ランクできる手法を提案する。
論文 参考訳(メタデータ) (2024-03-19T02:34:18Z) - Regression-aware Inference with LLMs [52.764328080398805]
提案手法は,一般的な回帰と評価指標に準最適であることを示す。
本稿では,ベイズ最適解を推定し,サンプル応答からクローズド形式の評価指標を推定する代替推論手法を提案する。
論文 参考訳(メタデータ) (2024-03-07T03:24:34Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
大規模言語モデル(LLM)のバイアスを効果的に軽減するために,正面調整に基づく新たな因果的プロンプト手法を提案する。
実験結果から,提案手法は7つの自然言語処理データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-05T07:47:34Z) - Reinforcement Replaces Supervision: Query focused Summarization using
Deep Reinforcement Learning [43.123290672073814]
クエリに基づいて文書から要約を生成するシステムを扱う。
Reinforcement Learning (RL) が自然言語生成のための Supervised Learning (SL) の一般化を提供するという知見に触発されて,本課題に RL ベースのアプローチを用いる。
我々は、ROUGE、BLEU、Semantic similarityといった様々な報酬信号に基づいて訓練された複数のポリシーグラディエントネットワークを開発する。
論文 参考訳(メタデータ) (2023-11-29T10:38:16Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive
Question Answering [28.18555591429343]
我々はKECP(Knowledge Enhanced Contrastive Prompt-tuning)という新しいフレームワークを提案する。
PLMにポインタヘッドを追加する代わりに、タスクを非自己回帰型マスケッド言語モデリング(MLM)生成問題に変換する。
提案手法は,数ショット設定における最先端のアプローチを大きなマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2022-05-06T08:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。