Exploring AI-Enabled Cybersecurity Frameworks: Deep-Learning Techniques, GPU Support, and Future Enhancements
- URL: http://arxiv.org/abs/2412.12648v1
- Date: Tue, 17 Dec 2024 08:14:12 GMT
- Title: Exploring AI-Enabled Cybersecurity Frameworks: Deep-Learning Techniques, GPU Support, and Future Enhancements
- Authors: Tobias Becher, Simon Torka,
- Abstract summary: Emerging cybersecurity systems are incorporating AI techniques, specifically deep-learning algorithms, to enhance their ability to detect incidents, analyze alerts, and respond to events.
While these techniques offer a promising approach to combating dynamic security threats, they often require significant computational resources.
We have identified a total of emphtwo deep-learning algorithms that are utilized by emphthree out of 38 selected cybersecurity frameworks.
- Score: 0.4419843514606336
- License:
- Abstract: Traditional rule-based cybersecurity systems have proven highly effective against known malware threats. However, they face challenges in detecting novel threats. To address this issue, emerging cybersecurity systems are incorporating AI techniques, specifically deep-learning algorithms, to enhance their ability to detect incidents, analyze alerts, and respond to events. While these techniques offer a promising approach to combating dynamic security threats, they often require significant computational resources. Therefore, frameworks that incorporate AI-based cybersecurity mechanisms need to support the use of GPUs to ensure optimal performance. Many cybersecurity framework vendors do not provide sufficiently detailed information about their implementation, making it difficult to assess the techniques employed and their effectiveness. This study aims to overcome this limitation by providing an overview of the most used cybersecurity frameworks that utilize AI techniques, specifically focusing on frameworks that provide comprehensive information about their implementation. Our primary objective is to identify the deep-learning techniques employed by these frameworks and evaluate their support for GPU acceleration. We have identified a total of \emph{two} deep-learning algorithms that are utilized by \emph{three} out of 38 selected cybersecurity frameworks. Our findings aim to assist in selecting open-source cybersecurity frameworks for future research and assessing any discrepancies between deep-learning techniques used in theory and practice.
Related papers
- Integrating Cybersecurity Frameworks into IT Security: A Comprehensive Analysis of Threat Mitigation Strategies and Adaptive Technologies [0.0]
The cybersecurity threat landscape is constantly actively making it imperative to develop sound frameworks to protect the IT structures.
This paper aims to discuss the application of cybersecurity frameworks into the IT security with focus placed on the role of such frameworks in addressing the changing nature of cybersecurity threats.
The discussion also singles out such technologies as Artificial Intelligence (AI) and Machine Learning (ML) as the core for real-time threat detection and response mechanisms.
arXiv Detail & Related papers (2025-02-02T03:38:48Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.
In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Machine Learning and Deep Learning Techniques used in Cybersecurity and Digital Forensics: a Review [0.0]
Machine learning (ML) and deep learning (DL) have emerged as game changing technologies that introduce methods to identify stop and analyze cyber risks.
This review presents an overview of the ML and DL approaches used in these fields showcasing their advantages and possibilities.
It covers a range of AI techniques used in spotting intrusions in systems and classifying malware to prevent cybersecurity attacks, detect anomalies and enhance resilience.
arXiv Detail & Related papers (2024-12-24T17:22:51Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
Explainable Artificial Intelligence (XAI) aims to create machine learning models that can provide clear and interpretable explanations for their decisions and actions.
In the field of network cybersecurity, XAI has the potential to revolutionize the way we approach network security by enabling us to better understand the behavior of cyber threats.
arXiv Detail & Related papers (2023-03-07T22:54:18Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Deep Reinforcement Learning for Cybersecurity Threat Detection and
Protection: A Review [1.933681537640272]
Deep and machine learning-based solutions have been used in threat detection and protection.
Deep Reinforcement Learning has shown great promise in developing AI-based solutions for areas that had earlier required advanced human cognizance.
Unlike supervised machines and deep learning, deep reinforcement learning is used in more diverse ways and is empowering many innovative applications in the threat defense landscape.
arXiv Detail & Related papers (2022-06-06T16:42:00Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Review: Deep Learning Methods for Cybersecurity and Intrusion Detection
Systems [6.459380657702644]
Artificial Intelligence (AI) and Machine Learning (ML) can be leveraged as key enabling technologies for cyber-defense.
In this paper, we are concerned with the investigation of the various deep learning techniques employed for network intrusion detection.
arXiv Detail & Related papers (2020-12-04T23:09:35Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.