Activating Distributed Visual Region within LLMs for Efficient and Effective Vision-Language Training and Inference
- URL: http://arxiv.org/abs/2412.12785v1
- Date: Tue, 17 Dec 2024 10:44:47 GMT
- Title: Activating Distributed Visual Region within LLMs for Efficient and Effective Vision-Language Training and Inference
- Authors: Siyuan Wang, Dianyi Wang, Chengxing Zhou, Zejun Li, Zhihao Fan, Xuanjing Huang, Zhongyu Wei,
- Abstract summary: Large Vision-Language Models (LVLMs) typically learn visual capacity through visual instruction tuning.<n>We investigate the existence of an analogous textitvisual region within LLMs that functions as a cognitive core.<n>We propose a novel visual region-based pruning paradigm, removing non-critical layers outside the visual region, which can achieve minimal performance loss.
- Score: 46.00657360369715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Vision-Language Models (LVLMs) typically learn visual capacity through visual instruction tuning, involving updates to both a projector and their LLM backbones. Drawing inspiration from the concept of visual region in the human brain, we investigate the existence of an analogous \textit{visual region} within LLMs that functions as a cognitive core, and explore the possibility of efficient training of LVLMs via selective layers tuning. We use Bunny-Llama-3-8B-V for detailed experiments and LLaVA-1.5-7B and LLaVA-1.5-13B for validation across a range of visual and textual tasks. Our findings reveal that selectively updating 25\% of LLMs layers, when sparsely and uniformly distributed, can preserve nearly 99\% of visual performance while maintaining or enhancing textual task results, and also effectively reducing training time. Based on this targeted training approach, we further propose a novel visual region-based pruning paradigm, removing non-critical layers outside the visual region, which can achieve minimal performance loss. This study offers an effective and efficient strategy for LVLM training and inference by activating a layer-wise visual region within LLMs, which is consistently effective across different models and parameter scales.
Related papers
- Improving Autoregressive Visual Generation with Cluster-Oriented Token Prediction [52.09472099976885]
IAR is an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models.
Our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID.
arXiv Detail & Related papers (2025-01-01T15:58:51Z) - OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
The standard practice for developing contemporary MLLMs is to feed features from vision encoder(s) into the LLM and train with natural language supervision.<n>We propose OLA-VLM, the first approach distilling knowledge into the LLM's hidden representations from a set of target visual representations.<n>We show that OLA-VLM boosts performance by an average margin of up to 2.5% on various benchmarks, with a notable improvement of 8.7% on the Depth task in CV-Bench.
arXiv Detail & Related papers (2024-12-12T18:55:18Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
We propose a training-free adaptive inference method for multi-modal LLMs.<n>With a minimalist design, our method can be applied to both video and image LLMs.<n>Under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding.
arXiv Detail & Related papers (2024-12-04T11:47:57Z) - Mitigating Hallucinations in Large Vision-Language Models (LVLMs) via Language-Contrastive Decoding (LCD) [13.430637580980164]
Large Vision-Language Models (LVLMs) are an extension of Large Language Models (LLMs) that facilitate processing both image and text inputs, expanding AI capabilities.
Our study introduces a Language Contrastive Decoding (LCD) algorithm that adjusts LVLM outputs based on Large Language Models distribution confidence levels.
Our method effectively improves LVLMs without needing complex post-processing or retraining, and is easily applicable to different models.
arXiv Detail & Related papers (2024-08-06T08:10:34Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
We propose a training-free method to inject visual referring into Multimodal Large Language Models (MLLMs)
We observe the relationship between text prompt tokens and visual tokens in MLLMs, where attention layers model the connection between them.
We optimize a learnable visual token based on an energy function, enhancing the strength of referential regions in the attention map.
arXiv Detail & Related papers (2024-07-31T11:40:29Z) - Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement [93.73648674743097]
Visual program synthesis is a promising approach to exploit the reasoning abilities of large language models for compositional computer vision tasks.
Previous work has used few-shot prompting with frozen LLMs to synthesize visual programs.
No dataset of visual programs for training exists, and acquisition of a visual program dataset cannot be easily crowdsourced.
arXiv Detail & Related papers (2024-04-06T13:25:00Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Mitigating Object Hallucination in Large Vision-Language Models via Image-Grounded Guidance [51.30560006045442]
Image-gRounded guIdaNcE (MARINE) is a framework that is both training-free and API-free.<n>MARINE effectively and efficiently reduces object hallucinations during inference by introducing image-grounded guidance to LVLMs.<n>Our framework's flexibility further allows for the integration of multiple vision models, enabling more reliable and robust object-level guidance.
arXiv Detail & Related papers (2024-02-13T18:59:05Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - PerceptionGPT: Effectively Fusing Visual Perception into LLM [31.34127196055722]
The integration of visual inputs with large language models (LLMs) has led to remarkable advancements in multi-modal capabilities, giving rise to visual large language models (VLLMs)
We present a novel end-to-end framework named PerceptionGPT, which efficiently equips the VLLMs with visual perception abilities.
Our approach significantly alleviates the training difficulty suffered by previous approaches that formulate the visual outputs as discrete tokens.
arXiv Detail & Related papers (2023-11-11T16:59:20Z) - Frozen Transformers in Language Models Are Effective Visual Encoder Layers [26.759544759745648]
Large language models (LLMs) are surprisingly strong encoders for purely visual tasks in the absence of language.
Our work pushes the boundaries of leveraging LLMs for computer vision tasks.
We propose the information filtering hypothesis to explain the effectiveness of pre-trained LLMs in visual encoding.
arXiv Detail & Related papers (2023-10-19T17:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.