ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models
- URL: http://arxiv.org/abs/2407.21534v6
- Date: Tue, 07 Jan 2025 02:54:18 GMT
- Title: ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models
- Authors: Mingrui Wu, Xinyue Cai, Jiayi Ji, Jiale Li, Oucheng Huang, Gen Luo, Hao Fei, Guannan Jiang, Xiaoshuai Sun, Rongrong Ji,
- Abstract summary: We propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs)
We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map.
Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point.
- Score: 73.34709921061928
- License:
- Abstract: In this work, we propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs) through test-time optimization of a learnable latent variable. We observe that attention, as the core module of MLLMs, connects text prompt tokens and visual tokens, ultimately determining the final results. Our approach involves adjusting visual tokens from the MLP output at test time, controlling the attention response to ensure text prompt tokens attend to visual tokens in referring regions. We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map. This enables detailed region description and reasoning without the need for substantial training costs or model retraining. Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point. The results demonstrate that our method exhibits out-of-domain generalization and interpretability.
Related papers
- Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
Excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation.
We propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE)
DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer.
arXiv Detail & Related papers (2024-11-29T11:24:23Z) - Enhancing Instruction-Following Capability of Visual-Language Models by Reducing Image Redundancy [37.471419716572086]
There is a significant gap in instruction-following capabilities between Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)
We propose Visual-Modality Token Compression (VMTC) and Cross-Modality Attention Inhibition (CMAI) strategies to alleviate this gap.
arXiv Detail & Related papers (2024-11-23T05:03:32Z) - EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
We propose a novel Multimodal Large Language Models (MLLM) that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches.
Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM.
We also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts.
arXiv Detail & Related papers (2024-09-25T08:22:00Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
This study targets a critical aspect of multi-modal LLMs' (LLMs&VLMs) inference: explicit controllable text generation.
We introduce a novel inference method, Prompt Highlighter, which enables users to highlight specific prompt spans to interactively control the focus during generation.
We find that, during inference, guiding the models with highlighted tokens through the attention weights leads to more desired outputs.
arXiv Detail & Related papers (2023-12-07T13:53:29Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.